Câu hỏi:

23/04/2022 196

Cho hình chóp S.ABC có AB=AC=4, BC=2, SA=43, SAB=SAC=300. Gọi G1;G2;G3lần lượt là trọng tâm các tam giác ΔSBC,ΔSCA,ΔSAB và T đối xứng với S qua mặt phẳng (ABC). Thể tích khối chóp TG1G2G3bằng \[\frac{a}{b}\], với a,bab tối giản. Tính giá trị của biểu thức P=2ab.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Gọi M là trung điểm của BC, chứng minh BC(SAM), từ đó xác định chiều cao hạ từ đỉnh S của khối chóp bằng cách sử dụng định lí: Cho hai mặt phẳng vuông góc, đường thẳng nằm trong mặt này và vuông góc với giao tuyến thì sẽ vuông góc với mặt phẳng kia.

- Xác định tỉ số \[\frac{{d\left( {T;\left( {{G_1}{G_2}{G_3}} \right)} \right)}}{{d\left( {S;\left( {ABC} \right)} \right)}};{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{{S_{\Delta {G_1}{G_2}{G_3}}}}}{{{S_{\Delta ABC}}}}\], từ đó suy ra tỉ số VT.G1G2G3VS.ABC.

- Tính chiều cao của khối chóp, chính là chiều cao của tam giác SAM nhờ vào diện tích tam giác SAM, muốn tínhSΔSAM ta sử dụng định lí Pytago tính từng cạnh của tam giác sau đó áp dụng công thức He-rong SΔSAM=p(pSA)(pAM)(pSM)với p là nửa chu vi tam giác SAM.

- Tính VS.ABC, từ đó tính VT.G1G2G3, suy ra \[a,{\mkern 1mu} {\mkern 1mu} b\] và tính P.

Giải chi tiết:

 (VDC): Cho hình chóp có , , , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng . Thể tích khối chóp bằng \[\frac{a}{b}\], với và tối giản. Tính giá trị của biểu thứ (ảnh 24)

Xét tam giác SAB và ΔSACcó:

SA chung

\[AB = AC{\mkern 1mu} {\mkern 1mu} \left( {gt} \right)\]

SAB=SAC=300(gt)

ΔSAB=ΔSAC(c.g.c)

SB=SC (2 cạnh tương ứng) ΔSBC cân tại S.

Gọi M,N lần lượt là trung điểm của BC,AC ta có

{SMBCAMBCBC(SAM).

Trong (SAM) kẻ SHAM(HAM) ta có: {SHAMSHBC(BC(SAM))SH(ABC).

Dễ thấy (G1G2G3)//(ABC) và d(S;(G1G2G3))d(S;(ABC))=SG1SM=23

d(S;(G1G2G3))=23SH.

\[ \Rightarrow d\left( {T;\left( {{G_1}{G_2}{G_3}} \right)} \right) = 2SH - \frac{2}{3}SH = \frac{4}{3}SH\].

Lại có ΔG1G2G3 đồng dạng với ΔABC theo tỉ số k=G1G2AB=G1G2MN.MNAB=23.12=13.

SΔG1G2G3=19SΔABC

VT.G1G2G3VS.ABC=d(T;(G1G2G3))d(S;(ABC)).SΔG1G2G3SΔABC=43.19=427

 (VDC): Cho hình chóp có , , , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng . Thể tích khối chóp bằng \[\frac{a}{b}\], với và tối giản. Tính giá trị của biểu thứ (ảnh 46)

Xét tam giác vuông \[ABM\] có: AM=AB2BM2=4212=15.

SΔABC=12AM.BC=12.15.2=15.

Xét tam giác SAB có:

SB2=SA2+AB22SA.AB.cosSAB

=(43)2+422.43.4.cos300=16

\[ \Rightarrow SB = 4 = SC\]

Xét tam giác vuông \[SBM\] có SM=SB2BM2=4212=15.

Gọi  (VDC): Cho hình chóp có , , , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng . Thể tích khối chóp bằng \[\frac{a}{b}\], với và tối giản. Tính giá trị của biểu thứ (ảnh 53)là nửa chu vi tam giác SAM ta có p=SA+AM+SM2=43+15+152=23+15.

SΔSAM=p(pSA)(pAM)(pSM)=36=6.

Lại có SΔSAM=12SH.AMSH=2SΔSAMAM=2.615=1215.

VS.ABC=13SH.SΔABC=13.1215.15=4.

VT.G1G2G3=427VS.ABC=427.4=1627.

a=16;b=27. Vậy P=2ab=2.1627=5.

Đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m[2021;2021] để hàm số g(x)=f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 8)

Xem đáp án » 23/04/2022 7,216

Câu 2:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số y=|3x48x36x2+24xm|có 7 điểm cực trị. Tính tổng các phần tử của S.

Xem đáp án » 23/04/2022 4,149

Câu 3:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

Xem đáp án » 23/04/2022 2,828

Câu 4:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x33x2 tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Xem đáp án » 23/04/2022 2,651

Câu 5:

Có bao nhiêu cách sắp xếp 8 học sinh thành một hàng dọc?

Xem đáp án » 05/04/2022 2,462

Câu 6:

Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số g(x)=f(4xx2)+13x33x2+8x53trên đoạn [1;3].

 (VDC): Cho hàm số có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn . (ảnh 4)

Xem đáp án » 23/04/2022 1,548

Câu 7:

Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a. góc giữa cạnh bên và mặt đáy bằng 600.Tính thể tích của khối nón có đỉnh là S và đáy là đường tròn ngoại tiếp ΔABC.

Xem đáp án » 23/04/2022 1,497

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store