Câu hỏi:
23/04/2022 218Cho hàm số , có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Phương pháp giải:
- Tìm tọa độ điểm A, viết phương trình tiếp tuyến của đồ thị hàm số tại A.
- Tìm điểm cố định mà Δ đi qua với mọi m.
- Xác định tâm I và bán kính R của đường tròn .
- Biện luận: Để Δ cắt đường tròn theo một dây cung có độ dài nhỏ nhất thì phải lớn nhất. Sử dụng quan hệ giữa đường vuông góc, đường xiên tìm GTLN của , từ đó tìm m.
Giải chi tiết:
Vì và A có hoành độ bằng 1 nên ta có .
Ta có .
Phương trình tiếp tuyến của (C) tại A là: .
Ta có:
\[\left( \Delta \right):{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {4 - 4m} \right)x - y - 3 + 3m = 0{\mkern 1mu} {\mkern 1mu} \forall m\]
⇒ Đường thẳng Δ luôn đi qua điểm .
Đường tròn có tâm , bán kính R=2.
Để Δ cắt đường tròn theo một dây cung có độ dài nhỏ nhất thì . phải lớn nhất.
Ta có: (quan hệ đường vuông góc, đường xiên).
.
Ta có: .
.
Vậy để Δ cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất thì .
Đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Câu 2:
Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Câu 3:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].
Câu 5:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Câu 6:
Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn [1;3].
Câu 7:
Cho giới hạn , với \[\frac{a}{b}\] là phân số tối giản. Tính giá trị của biểu thức .
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!