Câu hỏi:

11/07/2024 24,488 Lưu

Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như Hình 4.40.

a) Hãy tìm hai cặp tam giác có chung đỉnh O bằng nhau.

b) Chứng minh rằng ΔDAB=ΔBCD.

Cho hai đoạn thẳng AC và BD cắt nhau tại điểm O sao cho OA = OC, OB = OD như Hình 4.40.  a) Hãy tìm hai cặp tam giác có chung đỉnh O bằng nhau (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Xét hai tam giác AOD và COB có:

OA = OC (theo giả thiết).

AOD^=COB^ (2 góc đối đỉnh).

OD = OB (theo giả thiết).

Vậy ΔAOD=ΔCOB (c – g – c).

Xét hai tam giác AOB và COD có:

OA = OC (theo giả thiết).

AOB^=COD^ (2 góc đối đỉnh).

OB = OD (theo giả thiết).

Vậy ΔAOB=ΔCOD (c – g – c).

b) Do ΔAOD=ΔCOB nên AD = BC (2 cạnh tương ứng).

Do ΔAOB=ΔCOD nên AB = CD (2 cạnh tương ứng).

Xét hai tam giác DAB và BCD có:

AD = BC (chứng minh trên).

AB = CD (chứng minh trên).

BD chung.

Vậy ΔDAB=ΔBCD (c – c – c).

Toàn Nguyễn

Toàn Nguyễn

Quá hay

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Do AB = CD nên AB + BC = CD + BC.

hay AC = DB.

Vậy AC = DB.

b) Xét hai tam giác OAC và ODB có:

OA = OD (theo giả thiết).

OAC^=ODB^ (theo giả thiết).

AC = BD (chứng minh trên).

Vậy ΔOAC=ΔODB (c – g – c).

Lời giải

Xét Hình 4.39a.

Trong mỗi hình bên (H.4.39), hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau (ảnh 2)

Xét hai tam giác ABD và CDB có:

AB = CD (theo giả thiết).

ABD^=CDB^ (theo giả thiết).

BD chung.

Vậy ΔABD=ΔCDB (c – g – c).

Xét Hình 4.39b.

Trong mỗi hình bên (H.4.39), hãy chỉ ra một cặp tam giác bằng nhau và giải thích vì sao chúng bằng nhau (ảnh 3)

Xét hai tam giác AOD và COB có:

OA = OC (theo giả thiết).

AOD^=COB^ (2 góc đối đỉnh).

OD = OB (theo giả thiết).

Vậy ΔAOD=ΔCOB (c – g – c).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP