Câu hỏi:

06/01/2020 823

Từ các số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số tự nhiên có sáu chữ số đôi một khác nhau trong đó các chữ số 1, 2, 3 luôn có mặt và đứng cạnh nhau?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Số cách chọn 3 số bất kì từ tập {4;5;6;7} là C34

Do 1, 2, 3 luôn đứng cạnh nhau nên ta xem chúng như một phần tử.

Số các số tự nhiên có sáu chữ số đôi một khác nhau trong đó 1, 2, 3 luôn đứng cạnh nhau là 4!. C34.3! = 576 số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Gọi n là số nguyên dương nhỏ hơn 26.

Ta có : 0 < n < 26, 

Chọn một chữ cái trong 24 chữ cái có 24 cách.

Chọn một số nguyên dương ( nhỏ hơn 26) có 25 cách.

Theo quy tắc nhân có : 24.25 = 600 cách ghi nhãn khác nhau.

Lời giải

Chọn C

Lấy đúng 3 phần tử của tập hợp gồm 10 phần tử là một tổ hợp chập 3 của 10.

Do đó, số tập con cần tìm là C103.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP