Câu hỏi:

12/07/2024 14,226

Cho tam giác ABC, biết cạnh a = 152, B^=79o,C^=61o  . Tính các góc, các cạnh còn lại và bán kính đường tròn ngoại tiếp của tam giác đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tam giác ABC có

A^+B^+C^=180oA^=180o(B^+C^)=180o(79o+61o)=40o

Áp dụng định lí sin ta có:

asinA=bsinB=csinC=2R152sin40o=bsin79o=csin61o=2R

Từ 152sin40o=bsin79ob=152sin79osin40o232,13 .

Từ 152sin40o=csin61oc=152.sin61osin40o206,82 .

Từ 152sin40o=2RR=1522sin40o118,24 .

Vậy góc và các cạnh còn lại, bán kính đường tròn ngoại tiếp  của tam giác ABC là:

  A^=40o ; AC = b ≈ 232,13 ; AB = c ≈ 206,82; R ≈ 118,24.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Áp dụng công thức tính diện tích tam giác ta có:

S=12.AC.AB.sinA=12.6.8.sin60o=12.6.8.32=12320,8

 

Vậy diện tích tam giác ABC là 20,8 (đơn vị diện tích).

b) Áp dụng định lí côsin cho tam giác ABC ta có:

BC2 = AB2 + AC2  – 2.AB.AC.cosA = 62 + 82   2.6.8.cos60° = 52

BC = 52 ≈ 7,2.

Mặt khác diện tích tam giác ABC:      

S=AB.AC.BC4RR=AB.AC.BC4S=6.8.524.1234,2

Media VietJack

Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên ta có IA = IB = IC = R = 4,2.

Nửa chu vi của tam giác IBC: 

p=IB+IC+BC2=4,2+4,2+7,22=7,8

Áp dụng công thức Heron ta tính được diện tích tam giác IBC:

S=7,8.(7,84,2).(7,84,2).(7,87,2)60,77,8

Vậy diện tích tam giác IBC là 7,8 (đơn vị diện tích).

Lời giải

Áp dụng hệ quả của định lí côsin cho tam giác ABC ta có:

cosA=AB2+AC2BC22.AB.AC=5002+700280022.500.7000,143

A^  ≈ 82°.

cosB=AB2+BC2AC22.AB.BC=5002+800270022.500.800=0,5

B^  = 60°.

Tam giác ABC có

 A^+B^+C^=180oC^=180o(A^+B^)=180o(82o+60o)=38o

Vậy các góc của tam giác ABC là:  A^≈ 82°, B^  = 60°; C^ = 38°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay