Câu hỏi:

10/06/2022 1,779

Tính tổng lập phương các nghiệm của phương trình: log2x.log3x+1=log2x+log3x

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Phương pháp:

Đưa phương trình về dạng tích sau đó giải phương trình logarit cơ bản.

Cách giải:

ĐKXĐ: x>0

Ta có log2x.log3x+1=log2x+log3x
log2x.log3xlog2x+1log3x=0log2x.log3x1+1log3x=0log3x1log2x1=0log3x1=0log2x1=0x=3x=2
Tổng lập phương các nghiệm của phương trình là: 33+23=35

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án D

Phương pháp:

Nếu y'x0=0y''x0>0x=x0 là điểm cực tiểu của hàm số.

Cách giải:

y=x44x2+3y'=4x38x;   y''=12x28

y'=0y''>0y'=4x38x=012x28>0x=0x=2x=2x>23x<23x=2y=1x=2y=1

Hàm số đạt cực tiểu tại x=±2,  yCT=1

Lời giải

Đáp án A

* Định nghĩa tiệm cận ngang của đồ thị hàm số y=fx 

Nếu limx+fx=a hoặc limxfx=ay=a là TCN của đồ thị hàm số.

* Định nghĩa tiệm cận đứng của đồ thị hàm số y=fx 

Nếu limxa+fx= hoặc limxafx=+ hoặc limxafx= thì x=a là TCĐ của đồ thị hàm số.

Cách giải:

TXĐ: D=;1212;+

limx+x24x21=limx+12x41x2=12;   limxx24x21=limx12x41x2=12 

 Đồ thị (C) có TCN là y=12,   y=12 

limx12x24x21=;    limx12+x24x21= 

 Đồ thị (C) có TCĐ là x=12,   x=12

Đồ thị hàm số (C) có tất cả 4 đường tiệm cận.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP