Câu hỏi:

11/07/2024 649 Lưu

Khai triển đa thức (1 + 2x)12 thành dạng a0 + a1x + a2x2 + ... + a12x12.

Tìm hệ số ak lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số hạng chứa xk trong khai triển thành đa thức của (1 + 2x)12 hay (2x + 1)12 là C1212k2xk112k=C12k2kxk.

Do đó ak=C12k2k.

Thay các giá trị của k từ 0 đến 12 vào ak ta thấy a8 có giá trị lớn nhất và bằng 126720.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số hạng chứa x9 trong khai triển thành đa thức của (2x – 3)11 là C111192x93119=C11229x932=C1122932x9=253440x9.

Vậy hệ số của x9 trong khai triển thành đa thức của (2x – 3)11 là 253440.

Lời giải

Xét:

M=C2n0+C2n1+C2n2++C2n2n1+C2n2n;

N=C2n0C2n1+C2n2C2n2n1+C2n2n;

P=C2n0+C2n2+C2n4++C2n2n2+C2n2n;

Q=C2n1+C2n3+C2n5++C2n2n3+C2n2n1.

+) Ta có:

(x+1)2n=C2n0x2n+C2n1x2n11+C2n2x2n212++C2n2n1x12n1+C2n2n12n

=C2n0x2n+C2n1x2n1+C2n2x2n2++C2n2n1x+C2n2n.

Cho x = 1, ta được:

(1+1)2n=C2n012n+C2n112n1+C2n212n2++C2n2n11+C2n2n

=C2n0+C2n1+C2n2++C2n2n1+C2n2n.

Vậy M=(1+1)2n=22n.

+) Ta có:

(x1)2n=C2n0x2nC2n1x2n11+C2n2x2n212C2n2n1x12n1+C2n2n12n

=C2n0x2nC2n1x2n1+C2n2x2n2C2n2n1x+C2n2n.

Cho x = 1, ta được:

(11)2n=C2n012nC2n112n1+C2n212n2C2n2n11+C2n2n

=C2n0C2n1+C2n2C2n2n1+C2n2n.


Vậy N=(11)2n=0

Ta có: P+Q=M=22n và PQ=N=0 nên P=Q=22n:2=22n1.

Áp dụng: C2n1+C2n3++C2n2n1=204822n1=20482n1=11n=6.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP