Câu hỏi:

11/06/2022 299

Chứng minh rằng C2n0+C2n2+C2n4++C2n2n=C2n1+C2n3+C2n5++C2n2n1.

Áp dụng: Tìm số nguyên dương n thoả mãn C2n1+C2n3++C2n2n1=2048.

Siêu phẩm 30 đề thi thử THPT quốc gia 2024 do thầy cô VietJack biên soạn, chỉ từ 100k trên Shopee Mall.

Mua ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét:

M=C2n0+C2n1+C2n2++C2n2n1+C2n2n;

N=C2n0C2n1+C2n2C2n2n1+C2n2n;

P=C2n0+C2n2+C2n4++C2n2n2+C2n2n;

Q=C2n1+C2n3+C2n5++C2n2n3+C2n2n1.

+) Ta có:

(x+1)2n=C2n0x2n+C2n1x2n11+C2n2x2n212++C2n2n1x12n1+C2n2n12n

=C2n0x2n+C2n1x2n1+C2n2x2n2++C2n2n1x+C2n2n.

Cho x = 1, ta được:

(1+1)2n=C2n012n+C2n112n1+C2n212n2++C2n2n11+C2n2n

=C2n0+C2n1+C2n2++C2n2n1+C2n2n.

Vậy M=(1+1)2n=22n.

+) Ta có:

(x1)2n=C2n0x2nC2n1x2n11+C2n2x2n212C2n2n1x12n1+C2n2n12n

=C2n0x2nC2n1x2n1+C2n2x2n2C2n2n1x+C2n2n.

Cho x = 1, ta được:

(11)2n=C2n012nC2n112n1+C2n212n2C2n2n11+C2n2n

=C2n0C2n1+C2n2C2n2n1+C2n2n.


Vậy N=(11)2n=0

Ta có: P+Q=M=22n và PQ=N=0 nên P=Q=22n:2=22n1.

Áp dụng: C2n1+C2n3++C2n2n1=204822n1=20482n1=11n=6.

Quảng cáo

book vietjack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm hệ số của x9 trong khai triển thành đa thức của (2x – 3)11.

Xem đáp án » 11/06/2022 963

Câu 2:

Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có 5n ≥ 3n + 4n.

Xem đáp án » 11/06/2022 607

Câu 3:

Tìm giá trị lớn nhất trong các giá trị Cn0,Cn1,,Cnn.

Áp dụng: Tìm hệ số lớn nhất của khai triển (a + b)n, biết rằng tổng các hệ số của khai triển bằng 4096.

Xem đáp án » 11/06/2022 561

Câu 4:

Tìm số hạng có giá trị lớn nhất của khai triển (p + q)n với p > 0, q > 0, p + q = 1.

Xem đáp án » 11/06/2022 541

Câu 5:

Chứng minh rằng với mọi số tự nhiên n1, ta có

2.21 + 3.22 + 4.23 + ... + (n + 1).2n = n.2n + 1.

Xem đáp án » 11/06/2022 351

Câu 6:

Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.

Xem đáp án » 11/06/2022 327

Bình luận


Bình luận