Câu hỏi:
12/06/2022 417Ta sẽ “lập luận” bằng quy nạp toán học đề chỉ ra rằng: “Mọi con mèo đều có cùng màu”. Ta gọi P(n) với n nguyên dương là mệnh đề sau: “Mọi con mèo trong một đàn gồm n con đều có cùng màu”.
Bước 1. Với n = 1 thì mệnh đề P(1) là “Mọi con mèo trong một đàn gồm 1 con đều có cùng màu”. Hiền nhiên mệnh đề này là đúng!
Bước 2. Giả sử P(k) đúng với một số nguyên dương k nào đó. Xét một đàn mèo gồm k + 1 con. Gọi chúng là M1, M2, ..., Mk + 1. Bỏ con mèo Mk + 1 ra khỏi đàn, ta nhận được một đàn mèo gồm k con là M1, M2, ... , Mk. Theo giả thiết quy nạp, các con mèo có cùng màu. Bây giờ, thay vì bỏ con mèo Mk + 1 ta bỏ con mèo để có đàn mèo gồm k con là M2, M3, ..., Mk + 1. Vẫn theo giả thiết quy nạp thì các con mèo M2, M3, ..., Mk + 1 có cùng màu. Cuối cùng, đưa con mèo M1 trở lại đàn để có đàn mèo ban đầu. Theo các lập luận trên: các con mèo M1, M2, ..., Mk có cùng màu và các con mèo M2, M3, ..., Mk + 1 có cùng màu. Từ đó suy ra tất cả các con mèo M1, M2, ... , Mk + 1 đều có cùng màu.
Vậy, theo nguyên lí quy nạp thì P(n) đúng với mọi số nguyên dương n. Nói riêng, nếu gọi N là số mèo hiện tại trên Trái Đất thi việc P(N) đúng cho thấy tất cả các con mèo (trên Trái Đất) đều có cùng màu!
Tất nhiên là ta có thề tìm được các con mèo khác màu nhau! Theo em thì “lập luận” trên đây sai ở chỗ nào?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lập luận này sai ở Bước 2 khi k = 2.
Với k = 2, tức là đàn mèo có 2 con M1, M2. Khi đó việc tách đàn mèo này thành hai đàn mèo nhỏ, mỗi đàn 1 con mèo sẽ dẫn đến việc hai tập hợp {M1, M2, ... , Mk} (lúc này chỉ là {M1}) và {M2, M3, ..., Mk + 1} (lúc này chỉ là {M2}) không có phần tử giao nhau. Do đó không thể suy ra tất cả các con mèo M1, M2, ... , Mk + 1 đều có cùng màu.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1.
a) 2 + 4 + 6 + ... + 2n = n(n + 1);
b) 12 + 22 + 32 +... + n2 =
Câu 2:
Chứng minh rằng nếu x > –1 thì (1 + x)n ≥ 1+ nx với mọi số tự nhiên n.
Câu 3:
Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có đằng thức:
an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1).
Câu 4:
Cho tổng Sn =
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tồng Sn và chứng minh bằng quy nạp.
Câu 5:
Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là
Câu 6:
Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó. Nếu em nghĩ là nó sai, hãy đưa ra một phản ví dụ.
a) p(n) = n2 – n + 11 là số nguyên tố với mọi số tự nhiên n;
b) n2 > n với mọi số tự nhiên n ≥ 2.
Câu 7:
Xét đa thức p(n) = n2 – n + 41.
a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.
b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.
75 câu trắc nghiệm Vectơ nâng cao (P1)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
28 câu Trắc nghiệm Mệnh đề có đáp án
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
80 câu trắc nghiệm Vectơ cơ bản (P1)
5 câu Trắc nghiệm Phương sai và độ lệch chuẩn có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
50 câu trắc nghiệm Thống kê nâng cao (P1)
về câu hỏi!