Câu hỏi:

13/07/2024 525

Sử dụng máy tính cầm tay để tìm nghiệm của các hệ phương trình sau:

a) x+2y3z=22x+y+2z=32x3y+z=5

b) x3y+z=15y4z=0x+2y3z=1

c) x+y3z=13x5yz=3x+4y2z=1

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Sử dụng loại máy tính phù hợp, ấn liên tiếp các phím:

Sử dụng máy tính cầm tay để tìm nghiệm của các hệ phương trình sau: (ảnh 1)

Ta thấy trên màn hình hiện ra x = –4.

Ấn tiếp phím = ta thấy trên màn hình hiện ra y=117.

Ấn tiếp phím = ta thấy trên màn hình hiện ra z=127.

Vậy nghiệm của hệ phương trình là (x ; y ; z) = 4;117;127.

b) Sử dụng loại máy tính phù hợp, ấn liên tiếp các phím:

Sử dụng máy tính cầm tay để tìm nghiệm của các hệ phương trình sau: (ảnh 2)

Ta thấy trên màn hình hiện ra No-Solution

Vậy hệ phương trình đã cho vô nghiệm.

c) Sử dụng loại máy tính phù hợp, ấn liên tiếp các phím:

Sử dụng máy tính cầm tay để tìm nghiệm của các hệ phương trình sau: (ảnh 3)

Sử dụng máy tính cầm tay để tìm nghiệm của các hệ phương trình sau: (ảnh 4)

Ta thấy trên màn hình hiện ra Infinite Sol.

Vậy hệ đã cho có vô số nghiệm.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số tiền đầu tư cho khoản thứ nhất, thứ hai, thứ ba lần lượt là x, y, z (triệu đồng).

Theo đề bài ta có: x + y + z = 1000 (1)

Số tiền đầu tư cho khoản thứ nhất bằng tổng số tiền đầu tư cho khoản thứ hai và thứ ba, do đó: x = y + z hay x – y – z = 0 (2)

Lãi suất cho ba khoản đầu tư lần lượt là 6%, 8%, 15% và tổng số tiền lãi thu được là 84 triệu đồng nên 6%x + 8%y + 15%z = 84 hay 6x + 8y + 15z = 8400 (3)

Từ (1), (2) và (3) ta có hệ phương trình: x+y+z=1000xyz=06x+8y+15z=8400.

Giải hệ này ta được x = 500, y = 300, z =200.

Vậy số tiền đầu tư cho khoản thứ nhất, thứ hai, thứ ba lần lượt là 500 triệu đồng, 300 triệu đồng và 200 triệu đồng.

Lời giải

a) 3xy2z=52x+y+3z=66xy4z=93xy2z=55y13z=86xy4z=9

3xy2z=55y13z=8y=13xy2z=55.113z=8y=1

3xy2z=55.113z=8y=13x12.1=5z=1y=1x=2z=1y=1.

Vậy hệ phương trình đã cho có nghiệm (x; y; z) = (2; –1; 1)

b) x+2y+6z=5x+y2z=3x4y2z=1x+2y+6z=53y+4z=86y+8z=6

x+2y+6z=53y+4z=83y+4z=3x+2y+6z=53y+4z=80=5.

Phương trình thứ ba của hệ vô nghiệm. Vậy hệ đã cho vô nghiệm.

c) x+4y2z=23x+y+z=25x+7y5z=6x+4y2z=213y5z=45x+7y5z=6x+4y2z=213y5z=4   213y5z=4   3

Hai phương trình (2) và (3) tương đương. Khi đó, hệ phương trình đưa về:

x+4y2z=213y5z=4x+4y=2z+2y=5z+413x=6z+1013y=5z+413.

Đặt z = t với t là số thực bất kì, ta có: x=6t+1013,y=5t+413.

Vậy hệ phương trình đã cho có vô số nghiệm

(x ; y ; z) = 6t+1013;5t+413;t với t là số thực bất kì.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay