Câu hỏi:
11/07/2024 3,135
Cho các hệ phương trình:
(1)
(2)
a) Hệ phương trình (1) có gì đặc biệt? Giải hệ phương trình này.
b) Biến đổi hệ phương trình (2) về dạng như hệ phương trình (1). Giải hệ phương trình (2).
Cho các hệ phương trình:
(1)
(2)
a) Hệ phương trình (1) có gì đặc biệt? Giải hệ phương trình này.
b) Biến đổi hệ phương trình (2) về dạng như hệ phương trình (1). Giải hệ phương trình (2).
Câu hỏi trong đề: Bài tập Hệ phương trình bậc nhất ba ẩn có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Các phương trình trong hệ (1) theo thứ tự có số ẩn giảm dần: phương trình thứ nhất có 3 ẩn, phương trình thứ hai có 2 ẩn và phương trình thứ ba có 1 ẩn.
Hệ phương trình có dạng như hệ phương trình (1) được gọi là hệ phương trình bậc nhất ba ẩn dạng tam giác.
b) Trừ vế với vế của phương trình thứ hai cho phương trình thứ ba của hệ (2) ta được:
(2y + z) – (2y – z) = –1 – (–4) hay 2z = 3. Do đó hệ (2) tương đương với:
Từ phương trình thứ ba, ta có: z = 3/2
Thay z = 3/2 vào phương trình thứ hai ta được y = -5/4
Thay y = -5/4 và z = 3/2 vào phương trình thứ nhất, ta được x = -7/8
Vậy hệ phương trình đã cho có nghiệm duy nhất là
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a)
Vậy hệ phương trình đã cho có nghiệm duy nhất là
b)
Phương trình thứ ba của hệ này vô nghiệm, do đó hệ phương trình đã cho vô nghiệm.
c)
Từ phương trình thứ hai, ta có z = 3y – 1, thay vào phương trình thứ nhất ta được x = –2y + 1.
Vậy hệ phương trình đã cho có vô số nghiệm dạng (–2y + 1; y; 3y – 1).
Lời giải
Hướng dẫn giải
a)
Vậy hệ phương trình có nghiệm duy nhất là (2; 0; 1).
b)
Phương trình thứ ba của hệ này vô nghiệm, do đó hệ phương trình đã cho vô nghiệm.
c)
Từ phương trình thứ hai, ta có y = 2z + 2, thay vào phương trình thứ nhất ta được x = –3z.
Vậy hệ phương trình đã cho có vô số nghiệm dạng (–3z; 2z + 2; z).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.