Câu hỏi:

12/07/2024 3,435 Lưu

Cho elip (E) có phương trình chính tắc là x2a2+y2b2=1 (a > b > 0). Xét đường thẳng Δ1: x = ae.

Cho elip (E) có phương trình chính tắc là x^2/a^2 + y^2/b^2 = 1 (a > b > 0).  (ảnh 1)

Với mỗi điểm M(x; y) (E) (Hình 9), tính:

a) Khoảng cách d(M, Δ1) từ điểm M(x; y) đến đường thẳng Δ1.

b) Tỉ số MF1dM,Δ1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Viết lại phương trình đường thẳng Δ1 ở dạng: x+0y+ae=0. Với mỗi điểm M(x; y) thuộc (E), ta có: dM,Δ1=x+0y+ae12+02=|a+ex|e.

b) Do MF1 = a + ex > 0 nên MF1 = |a + ex|, suy ra dM,Δ1=MF1e. Vậy MF1dM,Δ1=e.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ trục toạ độ sao cho Mặt Trời trùng với tiêu điểm F1 của elip. Khi đó, áp dụng công thức bán kính qua tiêu ta có, khoảng cách giữa Trái Đất và Mặt Trời là:

MF1 = a + ex với x là hoành độ của điểm biểu diễn Trái Đất và –a ≤ x ≤ a.

Do đó a + e . (–a) ≤ MF1 ≤ a + e . a

hay 147055090 ≤ MF1 ≤ 152141431

Vậy khoảng cách nhỏ nhất và lớn nhất giữa Trái Đất và Mặt Trời lần lượt là 147055090 km và 152141431 km.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP