Câu hỏi:

11/07/2024 1,521 Lưu

Cho elip (E) có phương trình chính tắc x2a2+y2b2=1 (0<b<a) và cho điểm M(x0; y0) nằm trên (E).

Cho elip (E) có phương trình chính tắc x^2/a^2 + y^2/b^2 = 1 (0<b<a)  và cho điểm M(x0; y0) nằm trên (E). (ảnh 1)

Các điểm M1(–x0; y0), M2(x0; –y0), M3(–x0; –y0) có thuộc (E) hay không?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Nếu điểm M(x0; y0) thuộc (E) thì ta có: x02a2+y02b2=1.

Ta có: x02a2+(y0)2b2=(x0)2a2+y02b2=(x0)2a2+(y0)2b2=x02a2+y02b2=1 nên các điểm có toạ độ M1(x0; –y0), M2(–x0; y0), M3(–x0; –y0) cũng thuộc (E).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi phương trình chính tắc của elip đã cho là x2a2+y2b2=1 (a > b > 0).

Theo đề bài ta có:

Elip có tiêu cự bằng 6, suy ra 2c = 6, suy ra c = 3.

Khoảng cách giữa hai đường chuẩn là 50/3, suy ra 2ae=503

ae=253a2c=253a23=253a2=25b2=a2c2=259=16.

Vậy phương trình chính tắc của elip đã cho là x225+y216=1.

Lời giải

Hướng dẫn giải

a) Cóa2 = 64, b2 = 36 => a = 8, b = 6 c=a2b2=28=27.

Độ dài hai bán kính qua tiêu của M(x; y) là:

MF1 = a + c/a x = 8 + 278x = 8 + 74x; MF2 = a – cax = 8 – 278x = 8 – 74x.

b) Giả sử M(x; y) nằm trên (E) thoả mãn đề bài. Khi đó:

MF1 = MF2 <=> 8 +  = 8 –74x; => x = 0 [y=6y=6.

Vậy có hai điểm thoả mãn đề bài là M1(0; 6) và M2(0; –6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP