Câu hỏi:

12/07/2024 2,781 Lưu

Trong hệ Mặt Trời, các hành tinh chuyển động theo quỹ đạo là đường elip nhận tâm Mặt Trời là một tiêu điểm. Từ hình ảnh mô phỏng quỹ đạo chuyển động của các hành tinh (Hình 9), hãy so sánh tâm sai của quỹ đạo chuyển động của Trái Đất với tâm sai của quỹ đạo chuyển động của tiểu hành tinh HD20782b.

(Nguồn: https://www.nasa.gov)

Trong hệ Mặt Trời, các hành tinh chuyển động theo quỹ đạo là đường elip nhận tâm Mặt Trời là một tiêu điểm. Từ hình ảnh mô phỏng quỹ đạo chuyển động của các hành tinh (Hình 9), hãy so sánh tâm sai của quỹ đạo chuyển động của Trái Đất với tâm sai của quỹ đạo chuyển động của tiểu hành tinh HD20782b. (Nguồn: https://www.nasa.gov) (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Nhìn hình ta thấy quỹ đạo chuyển động của tiểu hành tinh HD20782b "dẹt" hơn so với quỹ đạo chuyển động của Trái Đất, do đó tâm sai của quỹ đạo chuyển động của Trái Đất nhỏ hơn tâm sai của quỹ đạo chuyển động của tiểu hành tinh HD20782b.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Gọi phương trình chính tắc của elip đã cho là x2a2+y2b2=1 (a > b > 0).

Theo đề bài ta có:

Elip có tiêu cự bằng 6, suy ra 2c = 6, suy ra c = 3.

Khoảng cách giữa hai đường chuẩn là 50/3, suy ra 2ae=503

ae=253a2c=253a23=253a2=25b2=a2c2=259=16.

Vậy phương trình chính tắc của elip đã cho là x225+y216=1.

Lời giải

Hướng dẫn giải

a) Cóa2 = 64, b2 = 36 => a = 8, b = 6 c=a2b2=28=27.

Độ dài hai bán kính qua tiêu của M(x; y) là:

MF1 = a + c/a x = 8 + 278x = 8 + 74x; MF2 = a – cax = 8 – 278x = 8 – 74x.

b) Giả sử M(x; y) nằm trên (E) thoả mãn đề bài. Khi đó:

MF1 = MF2 <=> 8 +  = 8 –74x; => x = 0 [y=6y=6.

Vậy có hai điểm thoả mãn đề bài là M1(0; 6) và M2(0; –6).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP