Câu hỏi:

17/06/2022 730 Lưu

Hàm số nào sau đây không đồng biến trên khoảng ;+

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Phương pháp:

* Phương pháp xét sự đồng biến, nghịch biến của các hàm số:

- Bước 1: Tìm tập xác định, tính f'x 

- Bước 2: Tìm các điểm tại đó f'x=0 hoặc f'x không xác định

- Bước 3: Sắp xếp các điểm đó theo thứ tự tăng dần và lập bảng biến thiên

- Bước 4: Kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Cách giải:

+) y=x1x+2 ta có y'=3x+22>0,  x2 Hàm số đồng biến trên các khoảng  ;2;   2;+

+) y=x3+2y'=3x20,  x: Hàm số đồng biến trên .

+) y=x+1y'=1>0,  x: Hàm số đồng biến trên .

+) y=x5+x31y'=5x4+3x20,  x;   y'=0x=0 Hàm số đồng biến trên .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương pháp:

Đồ thị hàm số bậc nhất trên bậc nhất y=ax+bcx+d,  a,c0,  adbc0 có tiệm cận đứng là dc, tiệm cận ngang là y=ac 

Cách giải:

Đường tiệm cận ngang của đồ thị hàm số y=2x3x+2 là y = 2 

Câu 2

Lời giải

Đáp án A

Phương pháp:

- Tìm TXĐ

- Tìm nghiệm và các điểm không xác định của y’ trên đoạn 12;e 

- Tính các giá trị tại 12,e và các điểm vừa tìm được

- Kết luận GTLN, GTNN của hàm số từ các giá trị trên.

Cách giải:

TXĐ: D=0;+ 

y=xlnxy=11x;   y'=0x=1 

Ta có: y12=12+ln2;   y1=1;   ye=e1 

=> Giá trị nhỏ nhất, giá trị lớn nhất của hàm số lần lượt là: 1 và e-1 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP