Câu hỏi:
07/07/2022 192Cho lục giác đều ABCDEF và O là tâm. Có bao nhiêu đẳng thức dưới đây là đẳng thức đúng?
1. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow 0 \);
II. \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AD} \);
III. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow {EB} \);
IV. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {FE} = \overrightarrow 0 \).
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là A
+) Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow {OA} + \left( {\overrightarrow {OB} + \overrightarrow {OE} } \right) = \overrightarrow {OA} + \overrightarrow 0 = \overrightarrow {OA} \). Do đó A sai.
+) Ta có \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AO} + \overrightarrow {OD} = \overrightarrow {AD} \). Do đó B đúng.
+) Ta có \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow {OA} + \left( {\overrightarrow {OB} + \overrightarrow {OE} } \right) = \overrightarrow {OA} + \overrightarrow 0 = \overrightarrow {OA} \ne \overrightarrow {EB} \). Do đó C sai.
+) Ta có \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {FE} = \overrightarrow {AB} + \overrightarrow {BO} + \overrightarrow {FE} = \overrightarrow {AO} + \overrightarrow {FE} = \overrightarrow {AO} + \overrightarrow {AO} = 2\overrightarrow {AO} \ne \overrightarrow 0 \). Do đó D sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có một điểm O bất kì. Đẳng thức nào sau đây đúng?
Câu 4:
Cho hình bình hành ABCD có tâm O, G là trọng tâm tam giác BCD. Đẳng thức nào sau đây sai?
Câu 5:
Cho tam giác ABC có I là trung điểm cạnh AB và G là trọng tâm tam giác ABC. Đẳng thức nào sau đây sai:
Câu 6:
Hai người cùng kéo một con thuyền với hai lực \[\overrightarrow {{F_1}} = \overrightarrow {OA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {OB} \] có độ lớn lần lượt là 550 N, 800 N. Cho biết góc giữa hai vectơ là 52o.
Độ lớn của vectơ hợp lực \[\overrightarrow F \] là tổng của hai lực \[\overrightarrow {{F_1}} \] và \[\overrightarrow {{F_2}} \] nằm trong khoảng nào dưới đây?
Câu 7:
Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 7N,\left| {\overrightarrow {{F_2}} } \right| = 3N\). Tính độ lớn của hợp lực \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \)(biết góc giữa \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 45°).
về câu hỏi!