Cho hình vuông ABCD có cạnh bằng 1. So sánh độ dài của hai vectơ sau:
\[\overrightarrow a = \left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} \];
\[\overrightarrow b = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} \].
Cho hình vuông ABCD có cạnh bằng 1. So sánh độ dài của hai vectơ sau:
\[\overrightarrow a = \left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} \];
\[\overrightarrow b = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} \].
A. \(\left| {\overrightarrow a } \right| = 2\left| {\overrightarrow b } \right|\);
B. \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right|\);
C. \(\left| {\overrightarrow a } \right| = \sqrt 2 \left| {\overrightarrow b } \right|\);
D. \(\left| {\overrightarrow a } \right| = \frac{1}{{\sqrt 2 }}\left| {\overrightarrow b } \right|\).
Quảng cáo
Trả lời:

Đáp án đúng là C

Ta có: \[\left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} = \overrightarrow {AC} + \overrightarrow {B{\rm{D}}} + \overrightarrow {CB} \]
\[ = \left( {\overrightarrow {AC} + \overrightarrow {CB} } \right) + \overrightarrow {B{\rm{D}}} \]
\[ = \overrightarrow {AB} + \overrightarrow {B{\rm{D}}} \]
\[ = \overrightarrow {AD} \]
Do đó \[\left| {\overrightarrow a } \right| = \left| {\overrightarrow {A{\rm{D}}} } \right|\] = 1.
Ta lại có: \[\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {A{\rm{D}}} + \overrightarrow {DA} } \right) = \overrightarrow {AC} + \overrightarrow {AA} = \overrightarrow {AC} \].
Do đó \[\left| {\overrightarrow b } \right| = \left| {\overrightarrow {AC} } \right|\].
Áp dụng định lí Pythagore vào tam giác ADC có:
AC2 = AD2 + DC2
\[ \Rightarrow \] AC2 = 12 + 12
\[ \Rightarrow \] AC2 = 2
\[ \Rightarrow \] AC = \[\sqrt 2 \] (do AC là độ dài đoạn thẳng)
Suy ra \[\left| {\overrightarrow b } \right| = \left| {\overrightarrow {AC} } \right| = \sqrt 2 \].
Vậy \[\left| {\overrightarrow b } \right| = \sqrt 2 \left| {\overrightarrow a } \right|\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {OC} - \overrightarrow {OD} \);
B. \(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {OC} - \overrightarrow {OD} \);
C. \(\overrightarrow {OA} - \overrightarrow {OD} = \overrightarrow {OC} - \overrightarrow {OB} \);
D. \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {OD} - \overrightarrow {OB} \).
Lời giải
Đáp án đúng là B

+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {BA} \) và \(\overrightarrow {OC} - \overrightarrow {OD} = \overrightarrow {DC} \):
\(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {AB} \) và \(\overrightarrow {OC} - \overrightarrow {OD} = \overrightarrow {DC} \);
Vì ABCD là hình bình hành nên AB = CD và AB // CD khi đó \(\overrightarrow {AB} = \overrightarrow {DC} \). Suy ra \(\overrightarrow {OA} - \overrightarrow {OB} \ne \overrightarrow {OC} - \overrightarrow {OD} \) và \(\overrightarrow {OB} - \overrightarrow {OA} = \overrightarrow {OC} - \overrightarrow {OD} \). Do đó B đúng, A sai.
+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OD} = \overrightarrow {DA} \) và \(\overrightarrow {OC} - \overrightarrow {OB} = \overrightarrow {BC} \):
Vì ABCD là hình bình hành nên AD = CB và AD // CB khi đó \(\overrightarrow {DA} = \overrightarrow {CB} \). Suy ra \(\overrightarrow {OA} - \overrightarrow {OD} \ne \overrightarrow {OC} - \overrightarrow {OB} \). Do đó C sai.
+) Áp dụng quy tắc hiệu ta có: \(\overrightarrow {OA} - \overrightarrow {OC} = \overrightarrow {CA} \) và \(\overrightarrow {OD} - \overrightarrow {OB} = \overrightarrow {BD} \):
Vì hai vectơ \(\overrightarrow {CA} \) và \(\overrightarrow {BD} \) không cùng phương nên không bằng nhau. Suy ra\(\overrightarrow {OA} - \overrightarrow {OC} \ne \overrightarrow {OD} - \overrightarrow {OB} \). Do đó D sai.
Câu 2
A. Mọi vectơ khác vectơ - không;
B. Không có vectơ nào ;
C. Chính nó;
D. Mọi vectơ kể cả vectơ – không.
Lời giải
Đáp án đúng là C
Vectơ \(\overrightarrow 0 \) được coi là vectơ đối của chính nó.
Câu 3
A. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {BC} \);
B. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow {AC} \);
C. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {CA} = \overrightarrow {BC} \);
D. Với ba điểm bất kì A, B, C ta có \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. 10N;
B. 4N;
C. 5,32N;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \);
B. \(\overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \);
C. \(\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \);
D. \(\overrightarrow {GC} + \overrightarrow {GO} = \overrightarrow 0 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(\overrightarrow {IA} + \overrightarrow {IB} = \overrightarrow {AB} \);
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \);
C. \(\overrightarrow {IA} = - \overrightarrow {IB} \);
D. \(\overrightarrow {BA} + \overrightarrow {AC} = \overrightarrow {BC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. (900; 1 000);
B. (1 000; 1 100);
C. (1 100; 1 200);
D. (1 200; 1 300).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.