Câu hỏi:
07/07/2022 208Cho hình vuông ABCD có cạnh bằng 1. So sánh độ dài của hai vectơ sau:
\[\overrightarrow a = \left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} \];
\[\overrightarrow b = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} \].
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là C
Ta có: \[\left( {\overrightarrow {AC} + \overrightarrow {B{\rm{D}}} } \right) + \overrightarrow {CB} = \overrightarrow {AC} + \overrightarrow {B{\rm{D}}} + \overrightarrow {CB} \]
\[ = \left( {\overrightarrow {AC} + \overrightarrow {CB} } \right) + \overrightarrow {B{\rm{D}}} \]
\[ = \overrightarrow {AB} + \overrightarrow {B{\rm{D}}} \]
\[ = \overrightarrow {AD} \]
Do đó \[\left| {\overrightarrow a } \right| = \left| {\overrightarrow {A{\rm{D}}} } \right|\] = 1.
Ta lại có: \[\overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {BC} + \overrightarrow {DA} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {A{\rm{D}}} + \overrightarrow {DA} } \right) = \overrightarrow {AC} + \overrightarrow {AA} = \overrightarrow {AC} \].
Do đó \[\left| {\overrightarrow b } \right| = \left| {\overrightarrow {AC} } \right|\].
Áp dụng định lí Pythagore vào tam giác ADC có:
AC2 = AD2 + DC2
\[ \Rightarrow \] AC2 = 12 + 12
\[ \Rightarrow \] AC2 = 2
\[ \Rightarrow \] AC = \[\sqrt 2 \] (do AC là độ dài đoạn thẳng)
Suy ra \[\left| {\overrightarrow b } \right| = \left| {\overrightarrow {AC} } \right| = \sqrt 2 \].
Vậy \[\left| {\overrightarrow b } \right| = \sqrt 2 \left| {\overrightarrow a } \right|\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có một điểm O bất kì. Đẳng thức nào sau đây đúng?
Câu 4:
Cho hình bình hành ABCD có tâm O, G là trọng tâm tam giác BCD. Đẳng thức nào sau đây sai?
Câu 5:
Cho tam giác ABC có I là trung điểm cạnh AB và G là trọng tâm tam giác ABC. Đẳng thức nào sau đây sai:
Câu 6:
Hai người cùng kéo một con thuyền với hai lực \[\overrightarrow {{F_1}} = \overrightarrow {OA} ,\,\,\overrightarrow {{F_2}} = \overrightarrow {OB} \] có độ lớn lần lượt là 550 N, 800 N. Cho biết góc giữa hai vectơ là 52o.
Độ lớn của vectơ hợp lực \[\overrightarrow F \] là tổng của hai lực \[\overrightarrow {{F_1}} \] và \[\overrightarrow {{F_2}} \] nằm trong khoảng nào dưới đây?
Câu 7:
Hai lực \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) cùng tác động lên một vật, cho \(\left| {\overrightarrow {{F_1}} } \right| = 7N,\left| {\overrightarrow {{F_2}} } \right| = 3N\). Tính độ lớn của hợp lực \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} \)(biết góc giữa \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) bằng 45°).
về câu hỏi!