Câu hỏi:
07/07/2022 444
Trong hình vẽ, hãy biểu thị mỗi vectơ \(\overrightarrow u ,\overrightarrow v \)hai vectơ \(\overrightarrow a ,\overrightarrow b \), tức là tìm các số x, y, z, t để \(\overrightarrow u = x\overrightarrow a + y\overrightarrow b ,\overrightarrow v = t\overrightarrow a + z\overrightarrow b .\)
Trong hình vẽ, hãy biểu thị mỗi vectơ \(\overrightarrow u ,\overrightarrow v \)hai vectơ \(\overrightarrow a ,\overrightarrow b \), tức là tìm các số x, y, z, t để \(\overrightarrow u = x\overrightarrow a + y\overrightarrow b ,\overrightarrow v = t\overrightarrow a + z\overrightarrow b .\)

Quảng cáo
Trả lời:
Đáp án đúng là B
Ta có hình vẽ sau:

Xét hình bình hành OABC, có:
\(\overrightarrow {OA} = \overrightarrow a ,\overrightarrow {OC} = 2\overrightarrow b ,\overrightarrow {OB} = \overrightarrow u \)
Khi đó, ta có:
\(\overrightarrow u = \overrightarrow {OB} = \overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow a + 2\overrightarrow b \) (quy tắc hình bình hành)
Xét hình bình hành OMNP, có:
\(\overrightarrow {ON} = \overrightarrow v ,\overrightarrow {OM} = 3\overrightarrow b ,\overrightarrow {OP} = - 2\overrightarrow a \)
Khi đó, ta có:
\(\overrightarrow v = \overrightarrow {ON} = \overrightarrow {OM} + \overrightarrow {OP} = 3\overrightarrow b - 2\overrightarrow a = - 2\overrightarrow a + 3\overrightarrow b .\)
Vậy \(\overrightarrow u = \overrightarrow a + 2\overrightarrow b ,\overrightarrow v = - 2\overrightarrow a + 3\overrightarrow b .\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là A

Ta có: \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} = - \overrightarrow {{F_3}} \)
Mà \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} = \overrightarrow {OA} + \overrightarrow {OB} = \overrightarrow {OD} \) (OBDA là hình bình hành)
\( \Rightarrow \overrightarrow {OD} = - \overrightarrow {{F_3}} \)
\( \Rightarrow \)Hai vecto \(\overrightarrow {OD} \) và \(\overrightarrow {{F_3}} \) là hai vecto đối nhau
\( \Rightarrow \left| {\overrightarrow {OD} } \right| = \left| { - \overrightarrow {{F_3}} } \right|\) và \(\widehat {BOD} = {60^0}\).
Ta lại có: \(\overrightarrow {BD} = \overrightarrow {{F_1}} \)
Xét ΔOBD, có:
\(OB = \frac{{BD}}{{\tan {{60}^0}}} = \frac{{20}}{{\sqrt 3 }}\left( N \right) \Rightarrow \left| {\overrightarrow {{F_2}} } \right| = \frac{{20}}{{\sqrt 3 }}N.\)
\(OD = \frac{{BD}}{{\sin {{60}^0}}} = \frac{{40\sqrt 3 }}{3}\left( N \right) \Rightarrow \left| {\overrightarrow {{F_3}} } \right| = \frac{{40\sqrt 3 }}{3}N.\)
Vậy độ lớn vecto \(\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) lần lượt là \(\frac{{20}}{{\sqrt 3 }}N,\frac{{40\sqrt 3 }}{3}N.\)
Lời giải
Đáp án đúng là D
Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \)
⇔ \(\overrightarrow {AM} = \frac{1}{2}\overrightarrow {AB} + \frac{1}{2}\overrightarrow {AC} \)
⇒ a = \(\frac{1}{2}\), b = \(\frac{1}{2}\).
⇒ S = a + 2b = \(\frac{1}{2}\) + 2.\(\frac{1}{2}\) = \(\frac{1}{2}\) + 1 = \(\frac{3}{2}\).
Vậy S = \(\frac{3}{2}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.