Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {k - \frac{1}{3};5} \right)\), B(-2; 12) và
C\(\left( {\frac{2}{3};k - 2} \right)\). Giá trị dương của k thuộc khoảng nào dưới đây thì ba điểm A, B, C thẳng hàng.
Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {k - \frac{1}{3};5} \right)\), B(-2; 12) và
C\(\left( {\frac{2}{3};k - 2} \right)\). Giá trị dương của k thuộc khoảng nào dưới đây thì ba điểm A, B, C thẳng hàng.
Quảng cáo
Trả lời:
Đáp án đúng là D
Ta có: \(\overrightarrow {AC} = \left( {\frac{2}{3} - \left( {k - \frac{1}{3}} \right);k - 2 - 5} \right) = \left( {1 - k;k - 7} \right)\),
\(\overrightarrow {BC} = \left( {\frac{2}{3} - \left( { - 2} \right);k - 2 - 12} \right) = \left( {\frac{8}{3};k - 14} \right)\)
Để ba điểm A, B, C thẳng hàng khi \(\overrightarrow {AC} \) và \(\overrightarrow {BC} \) cùng phương
\( \Leftrightarrow \frac{{1 - k}}{{\frac{8}{3}}} = \frac{{k - 7}}{{k - 14}}\)
⇔ (1 – k)(k – 14) = \(\frac{8}{3}\)(k – 7)
⇔ - k2 + 15k – 14 = \(\frac{8}{3}\)k – \(\frac{{56}}{3}\)
⇔ - 3k2 + 45k – 42 = 8k – 56
⇔ 3k2 – 37k – 14 = 0
⇔ k1 ≈ 12,7 hoặc k2 ≈ -0,37.
Ta thấy k1 là giá trị dương nằm trong khoảng (12; 14).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là D
Ta có \(\overrightarrow u = - 5\overrightarrow i + 6\overrightarrow j .\) Khi đó toạ độ của \(\overrightarrow u \) là \(\overrightarrow u \)(-5; 6).
Lời giải
Đáp án đúng là C
Vì G là trọng tâm tam giác ABC nên ta có:
\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + x{ & _C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + y{ & _C}}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{ccccc}x{ & _C} = 3.{x_G} - \left( {{x_A} + {x_B}} \right) = 3.( - 3) - (1 + 2) = - 12\\y{ & _C} = 3{y_G} - ({y_A} + {y_B}) = 3.2 - \left( {3 + 4} \right) = - 1\end{array} \right.\)
⇒ G(-12; -1).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.