Câu hỏi:

07/07/2022 610 Lưu

Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow u \left( {2;3x - 3} \right)\)\(\overrightarrow v \left( { - 1; - 2} \right)\). Có bao nhiêu giá trị nguyên của x thỏa mãn \(\left| {\overrightarrow u } \right| = \left| {2\overrightarrow v } \right|\).

A. 0;

B. 1;

C. 2;

D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

Độ dài của vectơ \(\overrightarrow u \)\(\left| {\overrightarrow u } \right| = \sqrt {{2^2} + {{\left( {3x - 3} \right)}^2}} = \sqrt {4 + {{\left( {3x - 3} \right)}^2}} \).

Độ dài của vectơ \(\overrightarrow v \)\(\left| {\overrightarrow v } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = \sqrt 5 \).

Suy ra độ dài của vectơ 2\(\overrightarrow v \) là 2\(\left| {\overrightarrow v } \right| = 2.\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} = 2\sqrt 5 \).

Để \(\left| {\overrightarrow u } \right|\) = 2\(\left| {\overrightarrow v } \right|\) thì\(\sqrt {4 + {{\left( {3x - 3} \right)}^2}} = 2\sqrt 5 \)

4 + (3x – 3)2 = 20

(3x – 3)2 = 16

\(\left[ \begin{array}{l}3x + 3 = 4\\3x + 3 = - 4\end{array} \right.\)

\(\left[ \begin{array}{l}3x = 1\\3x = - 7\end{array} \right.\)

\(\left[ \begin{array}{l}x = \frac{1}{3}\\x = - \frac{7}{3}\end{array} \right.\)

Ta thấy các giá trị \(\frac{1}{3}\) hay \( - \frac{7}{3}\) đều không là các giá trị nguyên. Do đó không tồn tại giá trị nguyên nào của x thỏa mãn điều kiện đầu bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow u \)(5; 6);

B. \(\overrightarrow u \)(-5; -6);

C. \(\overrightarrow u \)(6; -5);

D. \(\overrightarrow u \)(-5; 6).

Lời giải

Đáp án đúng là D

Ta có \(\overrightarrow u = - 5\overrightarrow i + 6\overrightarrow j .\) Khi đó toạ độ của \(\overrightarrow u \)\(\overrightarrow u \)(-5; 6).

Lời giải

Đáp án đúng là A

Ta có hai vecto \(\overrightarrow {OA} \left( {2;1} \right),\overrightarrow {OB} \left( {3;3} \right)\) không cùng phương (vì \(\frac{2}{3} \ne \frac{1}{3}\)). Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.

Suy ra các điểm O, A, B không thẳng hàng

Để OABM là hình bình hành khi và chỉ khi \(\overrightarrow {OA} = \overrightarrow {MB} \)

Ta có: \(\overrightarrow {OA} \left( {2;1} \right),\overrightarrow {MB} \left( {3 - x;3 - y} \right)\) nên

\(\left\{ \begin{array}{l}2 = 3 - x\\1 = 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right. \Rightarrow M\left( {1;2} \right).\)

Vậy điểm cần tìm là M(1;2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Tam giác OMN là tam giác đều;

B. Tam giác OMN vuông cân tại M;

C. Tam giác OMN vuông cân tại N;

D. Tam giác OMN vuông cân tại O.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP