Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \[\left\{ \begin{array}{l}{d_1}:3x - 2y - 6 = 0\\{d_2}:6x - 2y - 8 = 0\end{array} \right.\]
Giải hệ phương trình: \[\left\{ \begin{array}{l}3x - 2y - 6 = 0\\6x - 2y - 8 = 0\end{array} \right.\] \[ \Leftrightarrow \]\[ \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 6\\3x = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = \frac{2}{3}\\y = - 2\end{array} \right.\]
Suy ra hai đường thẳng cắt nhau tại 1 điểm.
Ta lại có: d1 có VTPT \(\overrightarrow {{n_1}} \) = (3; -2) và d2 có VTPT \(\overrightarrow {{n_2}} \)= (6; -2).
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} \) = 3.6 + (-3).(-2) = 18 + 6 = 24 ≠ 0. Do đó d1 và d2 không vuông góc.
Vậy hai đường thẳng cắt nhau nhưng không vuông góc.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + t\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 4t'\end{array} \right.\].
Xét hệ phương trình: \[\left\{ \begin{array}{l} - 1 + t = 2 - 2t'\\ - 2 - 2t = - 8 + 4t'\end{array} \right.\]\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}t + 2t' = 3\\ - 2t - 4t' = - 6\end{array} \right.\]
\[ \Leftrightarrow t + 2t' = 3\] như vậy phương trình có vô số nghiệm, suy ra hai đường thẳng trùng nhau.
Lời giải
Đáp án đúng là: A
Ta có:
\(\left\{ \begin{array}{l}{d_1}:7x - 3y + 6 = 0 \Rightarrow {{\vec n}_1} = \left( {7; - 3} \right)\\{d_2}:2x - 5y - 4 = 0 \Rightarrow {{\vec n}_2} = \left( {2; - 5} \right)\end{array} \right.\) \({\vec n_1}\); \({\vec n_2}\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1}\); \({d_2}\). Áp dụng công thức góc giữa hai đường thẳng:
\(\cos \varphi = \frac{{\left| {14 + 15} \right|}}{{\sqrt {49 + 9} .\sqrt {4 + 25} }} = \frac{1}{{\sqrt 2 }}\)\( \Rightarrow \varphi = \frac{\pi }{4}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.