Câu hỏi:

08/07/2022 250

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

+) Viết phương trình đường thẳng BC; độ dài BC

- Ta có: B(1; 5); C(3; 1)\[ \Rightarrow \]\[\overrightarrow {BC} \]= (2; -4) là vectơ chỉ phương của đường thẳng BC.

Ta chọn \[\overrightarrow n \]= (2; 1) là vectơ pháp tuyến của đường thẳng BC (\[\overrightarrow n \bot \overrightarrow {BC} \]), ta viết được phương trình đường thẳng qua BC như sau: 2.(x – 1) + 1.(y – 5) = 0 hay

2x + y – 7 = 0

- Độ dài BC: BC = \[\sqrt {{{(3 - 1)}^2} + {{(1 - 5)}^2}} = \sqrt {20} \]\[ = 2\sqrt 5 \].

+) Tính độ dài đường cao kẻ từ A:

Độ dài đường cao kẻ từ A chính là khoảng cách từ A đến phương trình đường thẳng qua BC, ta có:

\[{h_A} = d\left( {A;BC} \right) = \frac{{\left| {2.3 + 1.( - 4) - 7} \right|}}{{\sqrt {4 + 1} }} = \frac{5}{{\sqrt 5 }} = \sqrt 5 \].

+) Diện tích tam giác ABC:

\[{S_{ABC}} = \frac{1}{2}.{h_A}.BC\] = \[\frac{1}{2}.\sqrt 5 .2\sqrt 5 \] = 5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xét vị trí tương đối của hai đường thẳng:

\[{d_1}:\left\{ \begin{array}{l}x = - 1 + t\\y = - 2 - 2t\end{array} \right.\]\[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 4t'\end{array} \right.\].

Xem đáp án » 08/07/2022 10,456

Câu 2:

Góc tạo bởi giữa hai đường thẳng \[{d_1}\]: 7x - 3y + 6 = 0 và \[{d_2}\]: 2x - 5y có giá trị?

Xem đáp án » 08/07/2022 4,299

Câu 3:

Xét vị trí tương đối của hai đường thẳng:

 \[{d_1}:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\]\[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 2t'\end{array} \right.\].

Xem đáp án » 08/07/2022 3,408

Câu 4:

Tính góc tạo bởi giữa hai đường thẳng:

\[{d_1}\]: 2x - y - 10 = 0 và \[{d_2}\]: x - 3y + 9 = 0

Xem đáp án » 08/07/2022 1,266

Câu 5:

Xét vị trí tương đối của hai đường thẳng \[{d_1}:\frac{x}{3} - \frac{y}{4} = 1\]\[{d_2}\]: 3x + 4y - 10 = 0.

Xem đáp án » 08/07/2022 1,145

Câu 6:

Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:

Xem đáp án » 08/07/2022 1,037

Câu 7:

Xét vị trí tương đối của hai đường thẳng:

 \[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0

Xem đáp án » 08/07/2022 828

Bình luận


Bình luận