Câu hỏi:

12/07/2022 2,017 Lưu

Tam giác ABC có B^+C^=135° và BC = a. Tính bán kính đường tròn ngoại tiếp tam giác.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Xét tam giác ABC có B^+C^=135° ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

A^=180°B^+C^ 

A^=180°135°=45°

Áp dụng định lí sin trong tam giác ABC ta có: BCsinA=2R

R=BC2.sinA=a2.sin45°=a2.22=a2=a22 

Vậy bán kính đường tròn ngoại tiếp tam giác ABC là: R=a22. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Góc nhỏ nhất ứng với cạnh đối diện có độ dài nhỏ nhất.

Giả sử tam giác ABC có AB = 2, AC = 3, BC = 4. Khi đó góc nhỏ nhất là góc C ứng với cạnh đối diện AB.

Áp dụng hệ quả định lí côsin trong tam giác ABC ta có:

cosC=AC2+BC2AB22.AC.BC=32+42222.3.4=78.

Vậy côsin của góc nhỏ nhất trong tam giác bằng 78 

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Trong tam giác ABC có A^ là góc tù nên B^,C^ là góc nhọn.

Áp dụng định lí sin trong tam giác ABC ta có: ACsinB=ABsinC=2R 

R2sinB=RsinC=2R 

sinB=R22R=22sinC=R2R=12 B^=45°C^=30° (vì B^,C^ là góc nhọn)

Xét tam giác ABC có B^=45°,C^=30° ta có:

A^+B^+C^=180° (định lí tổng ba góc trong tam giác)

A^=180°B^C^ 

A^=180°45°35°=105°

Vậy A^=105° 

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP