21 câu Trắc nghiệm Toán 6 CTST Bài 2: Xác suất thực nghiệm (có đáp án)
🔥 Đề thi HOT:
31 câu Trắc nghiệm Toán 6 KNTT Bài 1: Tập hợp có đáp án
Dạng 4: Một số bài tập nâng cao về lũy thừa
10 Bài tập Các bài toán thực tế về số nguyên âm (có lời giải)
10 Bài tập Ứng dụng bội chung và bội chung nhỏ nhất để giải các bài toán thực tế (có lời giải)
Dạng 4. Quy tắc dấu ngoặc có đáp án
Đề kiểm tra giữa học kì 2 Toán 6 có đáp án (Mới nhất) (Đề 1)
19 câu Trắc nghiệm Toán 6 KNTT Bài 1: Tập hợp có đáp án (Phần 2)
Đề thi Cuối học kỳ 2 Toán 6 có đáp án (Đề 1)
Đề thi liên quan:
Danh sách câu hỏi:
Câu 1:
Tung hai đồng xu cân đối 50 lần ta được kết quả như sau:
Sự kiện | Hai đồng sấp | Một đồng sấp, một đồng ngửa | Hai đồng ngửa |
Số lần | 22 | 20 | 8 |
Xác suất thực nghiệm của sự kiện “Có một đồng xu sấp, một đồng xu ngửa” là
Câu 2:
Tung hai đồng xu cân đối 50 lần ta được kết quả như sau:
Sự kiện | Hai đồng sấp | Một đồng sấp, một đồng ngửa | Hai đồng ngửa |
Số lần | 22 | 20 | 8 |
Xác suất thực nghiệm của sự kiện “Hai đồng xu đều sấp”
Câu 3:
Gieo một con xúc xắc 6 mặt 50 lần ta được kết quả như sau:
Mặt | 1 chấm | 2 chấm | 3 chấm | 4 chấm | 5 chấm | 6 chấm |
Số lần | 8 | 7 | 3 | 12 | 10 | 10 |
Hãy tính xác suất thực nghiệm của sự kiện gieo được mặt có số lẻ chấm trong 50 lần gieo trên.
Câu 7:
Trong hộp có một số bút xanh, một số bút vàng và một số bút đỏ. lấy ngẫu nhiên 1 bút từ hộp, xem màu gì rồi trả lại. Lặp lại hoạt động trên 40 lần ta được kết quả như sau:
Màu bút | Bút xanh | Bút vàng | Bút đỏ |
Số lần | 14 | 10 | 16 |
Tính xác suất thực nghiệm của sự kiện lấy được màu đỏ
Câu 8:
Trong hộp có một số bút xanh, một số bút vàng và một số bút đỏ. lấy ngẫu nhiên 1 bút từ hộp, xem màu gì rồi trả lại. Lặp lại hoạt động trên 40 lần ta được kết quả như sau:
Màu bút | Bút xanh | Bút vàng | Bút đỏ |
Số lần | 14 | 10 | 16 |
Tính xác suất thực nghiệm của sự kiện không lấy được màu vàng
Câu 9:
Tổng hợp kết quả xét nghiệm bệnh viêm gan ở một phòng khám trong một năm ta được bảng sau:
Quý | Số ca xét nghiệm | Số ca dương tính |
I | 210 | 21 |
II | 150 | 15 |
III | 180 | 9 |
IV | 240 | 48 |
Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính quý I” là
Câu 10:
Tổng hợp kết quả xét nghiệm bệnh viêm gan ở một phòng khám trong một năm ta được bảng sau:
Quý | Số ca xét nghiệm | Số ca dương tính |
I | 210 | 21 |
II | 150 | 15 |
III | 180 | 9 |
IV | 240 | 48 |
Có bao nhiêu quý có xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính” dưới 0,1?
Câu 11:
Tổng hợp kết quả xét nghiệm bệnh viêm gan ở một phòng khám trong một năm ta được bảng sau:
Quý | Số ca xét nghiệm | Số ca dương tính |
I | 210 | 21 |
II | 150 | 15 |
III | 180 | 9 |
IV | 240 | 48 |
Xác suất thực nghiệm của sự kiện “một ca có kết quả dương tính sau quý III tính từ đầu năm” là
Câu 12:
Điền số thích hợp vào chỗ trống:
Kiểm tra thị lực của một học sinh trường THCS, ta thu được bảng kết quả như sau:
Khối | Số học sinh được kiểm tra | Số học sinh bị tật khúc xạ (cận thị, viễn thị, loạn thị) |
6 | 210 | 14 |
7 | 200 | 30 |
8 | 180 | 40 |
9 | 170 | 51 |
Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” khối 6 là…………, khối 7 là……………, khối 8 là …………, khối 9 là …………. Xác suất thực nghiệm của sự kiện “học sinh bị khúc xạ” lớn nhất là khối ……….
Câu 18:
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 | Số 3 | Lần 6 | Số 5 | Lần 11 | Số 3 | Lần 16 | Số 2 | Lần 21 | Số 1 |
Lần 2 | Số 1 | Lần 7 | Số 2 | Lần 12 | Số 2 | Lần 17 | Số 1 | Lần 22 | Số 5 |
Lần 3 | Số 2 | Lần 8 | Số 3 | Lần 13 | Số 2 | Lần 18 | Số 2 | Lần 23 | Số 3 |
Lần 4 | Số 3 | Lần 9 | Số 4 | Lần 14 | Số 1 | Lần 19 | Số 3 | Lần 24 | Số 4 |
Lần 5 | Số 4 | Lần 10 | Số 5 | Lần 15 | Số 5 | Lần 20 | Số 5 | Lần 25 | Số 5 |
Tính xác suất thực nghiệmiểu
Xuất hiện số 1
Câu 19:
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 | Số 3 | Lần 6 | Số 5 | Lần 11 | Số 3 | Lần 16 | Số 2 | Lần 21 | Số 1 |
Lần 2 | Số 1 | Lần 7 | Số 2 | Lần 12 | Số 2 | Lần 17 | Số 1 | Lần 22 | Số 5 |
Lần 3 | Số 2 | Lần 8 | Số 3 | Lần 13 | Số 2 | Lần 18 | Số 2 | Lần 23 | Số 3 |
Lần 4 | Số 3 | Lần 9 | Số 4 | Lần 14 | Số 1 | Lần 19 | Số 3 | Lần 24 | Số 4 |
Lần 5 | Số 4 | Lần 10 | Số 5 | Lần 15 | Số 5 | Lần 20 | Số 5 | Lần 25 | Số 5 |
Tính xác suất thực nghiệm
Xuất hiện số 2
Câu 20:
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ rồi bỏ lại thẻ vào hộp.
Sau 25 lần rút thẻ liên tiếp, hãy ghi kết quả thống kê theo mẫu sau:
Lần 1 | Số 3 | Lần 6 | Số 5 | Lần 11 | Số 3 | Lần 16 | Số 2 | Lần 21 | Số 1 |
Lần 2 | Số 1 | Lần 7 | Số 2 | Lần 12 | Số 2 | Lần 17 | Số 1 | Lần 22 | Số 5 |
Lần 3 | Số 2 | Lần 8 | Số 3 | Lần 13 | Số 2 | Lần 18 | Số 2 | Lần 23 | Số 3 |
Lần 4 | Số 3 | Lần 9 | Số 4 | Lần 14 | Số 1 | Lần 19 | Số 3 | Lần 24 | Số 4 |
Lần 5 | Số 4 | Lần 10 | Số 5 | Lần 15 | Số 5 | Lần 20 | Số 5 | Lần 25 | Số 5 |
Tính xác suất thực nghiệmụng
Xuất hiện số chẵn
287 Đánh giá
50%
40%
0%
0%
0%