Câu hỏi:

11/08/2022 1,176

Cho (d): x = y = z; (P): x + z - 1 = 0; (Q): y + 1 = 0. Gọi (D) là đường thẳng giao tuyến của (P) và (Q). Khoảng cách giữa hai đường thẳng (d) và (D) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Giao tuyến của hai mặt phẳng (P) và (Q) là nghiệm của hệ phương trình

x+z1=0y+1=0     

Đặt x = t thì hệ phương trình (1) trở thành

z=1ty=1  

Vậy suy ra phương trình đường thẳng D là:

Δ:x=t    y=1  z=1tuΔ=1;0;1

Chọn M(0; -1; 1) thuộc đường thẳng (D)

(d): x = y = zud=1;1;1

Chọn O(0; 0; 0) thuộc đường thẳng (d)

Ta có: OM=0;1;1

Áp dụng công thức tính khoảng cách của hai đường thẳng

dΔ/d=ud;uΔ;OMud;uΔ=1.0+2.1+1.112+22+12=62.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B

Giao tuyến của hai mặt phẳng x + 2y + z - 1 = 0, 2x - y - z + 4 = 0 là nghiệm của hệ phương trình

x+2y+z1=02xyz+4=0

Đặt x = t nên suy ra hệ phương trình (1) trở thành

x+2y+z1=02xyz+4=02y+z=1ty+z=2t+4

y=3t3z=5t+7  

Vậy suy ra dường thẳng cần tìm có phương trình tham số là

x=t         y=3t3z=5t+7  

Vậy phương trình đường thẳng d là x1=y+33=z75.

Lời giải

Đáp án đúng là: B

F (x) là nguyên hàm của hàm số f (x) trên ℝ nên ta có:

+) x ³ -1 nên suy ra

Fx=2x+3dx=x2+3x+C1

Mà F (0) = 2 Þ C1 = 2

Vậy suy ra F (x) = x2 + 3x + 2 (x ³ -1)

Þ F (1) = 1 + 3 + 2 = 6

+) x £ -1 nên suy ra

Fx=3x22dx=x32x+C2

Mà F (-2) = 1 Þ C2 = 5

Vậy suy ra F (x) = x3 - 2x + 5 (x £ -1)

Þ F (-3) = -27 + 6 + 5 = -16

Khi đó F (1) - F (-3) = 6 + 16 = 22.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP