Câu hỏi:
11/08/2022 1,421
Trong không gian Oxyz, phương trình mặt phẳng chứa đường thẳng (d): x - 1 = y - 2 = z + 1 và có khoảng cách đến điểm A(2; 3; -3) lớn nhất có phương trình
Trong không gian Oxyz, phương trình mặt phẳng chứa đường thẳng (d): x - 1 = y - 2 = z + 1 và có khoảng cách đến điểm A(2; 3; -3) lớn nhất có phương trình
Câu hỏi trong đề: Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là: B
Đường thẳng (d): x - 1 = y - 2 = z + 1 có véc-tơ chỉ phương là:
Phương trình tham số của đường thẳng (d) là
Viết phương trình (P) đi qua A và vuông góc với đường thẳng (d) nên nhận làm véc-tơ pháp tuyến
(P): (x - 2) + (y - 3) + (z + 3) = 0
Û x + y + z - 2 = 0
Gọi H là hình chiếu của M lên đường thẳng (d) nên suy ra H là giao điểm của (d) và mặt phẳng (P)
Suy ra H(1 + t; 2 + t; -1 + t) thuộc mặt phẳng (P)
Þ 1 + t + 2 + t + -1 + t - 2 = 0
Û 3t = 0 Û t = 0
Vậy H(1; 2; -1)
Để khoảng cách từ A đến mặt phẳng (Q) chứa (d) là lớn nhất thì AH vuông góc với mặt phẳng (Q)
Mặt phẳng (Q) đi qua H(1; 2; -1) và có làm véc-tơ pháp tuyến là
(Q): -(x - 1) - (y - 2) + 2(z + 1) = 0
Û - x - y + 2z + 5 = 0
Û x + y - 2z - 5 = 0.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Giao tuyến của hai mặt phẳng x + 2y + z - 1 = 0, 2x - y - z + 4 = 0 là nghiệm của hệ phương trình
Đặt x = t nên suy ra hệ phương trình (1) trở thành
Vậy suy ra dường thẳng cần tìm có phương trình tham số là
Vậy phương trình đường thẳng d là
Lời giải
Đáp án đúng là: B
F (x) là nguyên hàm của hàm số f (x) trên ℝ nên ta có:
+) x ³ -1 nên suy ra
Mà F (0) = 2 Þ C1 = 2
Vậy suy ra F (x) = x2 + 3x + 2 (x ³ -1)
Þ F (1) = 1 + 3 + 2 = 6
+) x £ -1 nên suy ra
Mà F (-2) = 1 Þ C2 = 5
Vậy suy ra F (x) = x3 - 2x + 5 (x £ -1)
Þ F (-3) = -27 + 6 + 5 = -16
Khi đó F (1) - F (-3) = 6 + 16 = 22.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.