Câu hỏi:

13/08/2022 2,928

Gọi z1 , z2 là hai nghiệm phức của phương trình z2 – 3z + 5 = 0. Môđun của số phức (2z¯1 − 3)(2z¯2 − 3) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có: z2 – 3z + 5 = 0

Áp dụng hệ thức Viet ta có: z1+z2=3z1.z2=5 

Û z1+z2¯=z1¯+z2¯=3z1.z2¯=5 

Ta có: (2z¯1 − 3)(2z¯2 − 3)

= 4z1.z2¯ − 6(z1¯ + z2¯) + 9

= 4.5 – 6.3 + 9

= 11

Vậy (2z¯1 − 3)(2z¯2 − 3) = 11.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có: f(x) = x3 + ax2 + bx + c

Þ f '(x) = 3x2 + 2ax + b

Þ f "(x) = 6x + 2a

Þ g(x) = f(x) + f '(x) + f "(x)

= x3 + ax2 + bx + c + 3x2 + 2ax + b + 6x + 2a

= x3 + (a + 3)x2 + (2a + b + 6)x + 2a + b + c

Þ g '(x) = 3x2 + 2(a + 3)x + 2a + b + 6

Hàm số g '(x) = 0 có 2 nghiệm x1 và x2 (x1 < x2) cũng là 2 điểm cực trị của y = g(x)

Nên g(x1) = 2; g(x2) = –4 (do g(x) là hàm số bậc ba có hệ số của x3 là 1 > 0)

Ta có phương trình hoành độ giao điểm là:

 f(x)g(x)+6=1  

fxgx6gx+6=0

 

Ta có g(x) = f(x) + f '(x) + f "(x)

Þ f(x) – g(x) = –[f '(x) + f "(x)]

 = –(3x2 + 2ax + b + 6x + 2a)

= –[3x2 + (2a + 6)x +  b + 2a]

Do đó ta có:

fxgx6gx+6=0

3x2+2a+6x+ b+2a6gx+6=0

3x2+2a+3x+2a+b+6gx+6=0

g'xgx+6=0

 

Û g '(x) = 0

x=x1x=x2

 

Þ S = x1x2g'(x)g(x)+6dx = ln|g(x)+6|x1x2 

= |ln|g(x2) + 6| – ln|g(x1) + 6||

= |ln(−4 + 6) – ln(2 + 6)|

= |ln2 – ln8|

= ln8 – ln2

= 3ln2 – ln2

= 2ln2

Vậy diện tích cần tìm là 2ln2.

Lời giải

Đáp án đúng là: C

Đường thẳng d: x12=y+11=z21 có một vectơ chỉ phương là  ud = (2; 1; −1)

Gọi M = AB ∩ d

Þ M(1 + 2t; −1 + t; 2 – t)

Với A(1; 2; −1) ta có:

AM = (2t; t – 3; 3 – t)

Lại có AB ^ d Û AM .u = 0

Û 2.2t + 1.(t – 3)1.(3 – t) = 0

Û 4t + t – 3 – 3 + t = 0

Û t = 1

Þ AM=2;2;2 

Þ uAB = (1; −1; 1)

Đường thẳng AB đi qua điểm A(1; 2; −1) có vectơ chỉ phương uAB = (1; −1; 1) có phương trình là:

x=1+t'y=2t'z=1+t' (t ℝ)

B nằm trên AB nên ta có B(1 + t'; 2 – t'; –1 + t')

Do B = AB ∩ (P) nên tọa độ của B thỏa mãn phương trình của (P): x + y + 2z + 1 = 0.

Þ 1 + t' + 2 – t' + 2.(–1 + t') + 1 = 0

Þ 2t' + 2 = 0

Þ t' = –1

Khi đó B(0; 3; −2)

Vậy tọa độ của B là (0; 3; −2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP