Xét các số phức z, w thỏa mãn |z| = 2 và |iw – 2 + 5i| = 1. Giá trị nhỏ nhất của |z2 – wz – 4 | bằng
Câu hỏi trong đề: Đề kiểm tra Học kì 2 Toán 12 có đáp án (Mới nhất) !!
Quảng cáo
Trả lời:
Đáp án đúng là: C
Đặt z = a + bi , w = c + di (a, b, c, d ∈ ℝ ).
Þ iw – 2 + 5i = i(c + di) – 2 + 5i
= ci + di2 – 2 + 5i
= (c + 5)i – d – 2
Khi đó ta có:
• |z| = Þ a2 + b2 = 4
Þ a, b ∈ [–2; 2]
• |iw – 2 + 5i| =
Þ (c + 5)2 + (d + 2)2 = 1
Þ c ∈ [–6; –4] và d ∈ [–3; –1].
Ta có:
T = |z2 – wz – 4|
= |z2 – wz − |z|2|
= |z2 – wz – z . |
= |z| . |z − − w|
= 2|z − − w|
Þ T = 2|2bi – (c + di)|
= 2|– c + (2b – d)i|
= 2 ≥ 2 = 2|c| ≥ 2.4 = 8
(do c ∈ [−6; −4] nên |c| ≥ 4)
Dấu “=” xảy ra khi và chỉ khi : Þ
Vậy |z2 – wz – 4| có giá trị nhỏ nhất bằng 8.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D
Ta có: f(x) = x3 + ax2 + bx + c
Þ f '(x) = 3x2 + 2ax + b
Þ f "(x) = 6x + 2a
Þ g(x) = f(x) + f '(x) + f "(x)
= x3 + ax2 + bx + c + 3x2 + 2ax + b + 6x + 2a
= x3 + (a + 3)x2 + (2a + b + 6)x + 2a + b + c
Þ g '(x) = 3x2 + 2(a + 3)x + 2a + b + 6
Hàm số g '(x) = 0 có 2 nghiệm x1 và x2 (x1 < x2) cũng là 2 điểm cực trị của y = g(x)
Nên g(x1) = 2; g(x2) = –4 (do g(x) là hàm số bậc ba có hệ số của x3 là 1 > 0)
Ta có phương trình hoành độ giao điểm là:
Ta có g(x) = f(x) + f '(x) + f "(x)
Þ f(x) – g(x) = –[f '(x) + f "(x)]
= –(3x2 + 2ax + b + 6x + 2a)
= –[3x2 + (2a + 6)x + b + 2a]
Do đó ta có:
Û g '(x) = 0
Þ S = =
= |ln|g(x2) + 6| – ln|g(x1) + 6||
= |ln(−4 + 6) – ln(2 + 6)|
= |ln2 – ln8|
= ln8 – ln2
= 3ln2 – ln2
= 2ln2
Vậy diện tích cần tìm là 2ln2.
Lời giải
Đáp án đúng là: C
Đường thẳng d: có một vectơ chỉ phương là = (2; 1; −1)
Gọi M = AB ∩ d
Þ M(1 + 2t; −1 + t; 2 – t)
Với A(1; 2; −1) ta có:
= (2t; t – 3; 3 – t)
Lại có AB ^ d Û . = 0
Û 2.2t + 1.(t – 3) – 1.(3 – t) = 0
Û 4t + t – 3 – 3 + t = 0
Û t = 1
Þ
Þ = (1; −1; 1)
Đường thẳng AB đi qua điểm A(1; 2; −1) có vectơ chỉ phương = (1; −1; 1) có phương trình là:
(t ∈ ℝ)
B nằm trên AB nên ta có B(1 + t'; 2 – t'; –1 + t')
Do B = AB ∩ (P) nên tọa độ của B thỏa mãn phương trình của (P): x + y + 2z + 1 = 0.
Þ 1 + t' + 2 – t' + 2.(–1 + t') + 1 = 0
Þ 2t' + 2 = 0
Þ t' = –1
Khi đó B(0; 3; −2)
Vậy tọa độ của B là (0; 3; −2).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.