Câu hỏi:

13/08/2022 1,838

Trong không gian Oxyz, cho hai điểm A(10; 6; −2), B(5; 10; −9) và mặt phẳng (α): 2x + 2y + z – 12 = 0. Điểm M thay đổi thuộc mặt phẳng (α) sao cho hai đường thẳng MA và MB luôn tạo với (α) các góc bằng nhau. Biết rằng điểm M luôn thuộc một đường tròn cố định. Hoành độ của tâm đường tròn đó bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C   

Mặt phẳng (α) có phương trình: 2x + 2y + z – 12 = 0.

Gọi H và K lần lượt là hình chiếu của A và B lên (α).

Với A(10; 6; −2) ta có:

AH = d(A;(α)) = 2.10+2.621222+22+1 = 6

• Với B(5; 10; −9)  ta có:

BK = d(B;(α)) = 2.5+2.1091222+22+1 = 3

Vì điểm M di động trên mặt phẳng (α) sao cho MA, MB luôn tạo với (α) các góc bằng nhau nên ta có sinAMH^ = sin BMK^

AHAM=BKBMBMAM=BKAH=12

Þ MA = 2MB

Gọi M(x; y; z).

MA = 2MB Û MA2 = 4MB2

Û (x – 10)2 + (y – 6)2 + (z + 2)2 = 4[(x – 5)2 + (y – 10)2 + (z + 9)2]

Û x2 – 20x + 100 + y2 – 12y + 36 + z2 + 4z + 4

= 4x2 – 40x + 100 + 4y2 – 80y + 400 + 4z2 + 72z + 324

Û 3x2 + 3y2 + 3z2 – 20x – 68y + 68z + 684 = 0

Û x2 + y2 + z2203x − 683y + 683z + 228 = 0

Suy ra điểm M thỏa mãn 2x+2y+z12=0(α)x2+y2+z2203x683y+683z+228=0(S) 

Mặt cầu (S) có tâm I103;343;343.

Gọi (ω) là đường tròn cố định luôn đi qua M.

Do đó M (ω) là giao tuyến của (α) và (S).

Þ Tâm N của (ω) là hình chiếu của tâm I trên mặt phẳng (α).

Mặt phẳng (α): 2x + 2y + z – 12 = 0 có vectơ pháp tuyến là (2; 2; 1).

Phương trình đường thẳng d qua I và vuông góc với (α) là:

x=103+2ty=343+2tz=343+t

 

 

Vì N là hình chiếu của I lên ) nên N d.

Þ N103+2t;343+2t;343+t

Mà N (α) nên ta có:

2.103+2t+2343+2t+343+t12=0

Þ 20 + 12t + 68 + 12t – 34 + 3t – 36 = 0

Þ 27t = –18

Þ t = 23

Suy ra điểm N(2; 10; −12)

Vậy hoành độ của tâm đường tròn (ω) bằng 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Ta có: f(x) = x3 + ax2 + bx + c

Þ f '(x) = 3x2 + 2ax + b

Þ f "(x) = 6x + 2a

Þ g(x) = f(x) + f '(x) + f "(x)

= x3 + ax2 + bx + c + 3x2 + 2ax + b + 6x + 2a

= x3 + (a + 3)x2 + (2a + b + 6)x + 2a + b + c

Þ g '(x) = 3x2 + 2(a + 3)x + 2a + b + 6

Hàm số g '(x) = 0 có 2 nghiệm x1 và x2 (x1 < x2) cũng là 2 điểm cực trị của y = g(x)

Nên g(x1) = 2; g(x2) = –4 (do g(x) là hàm số bậc ba có hệ số của x3 là 1 > 0)

Ta có phương trình hoành độ giao điểm là:

 f(x)g(x)+6=1  

fxgx6gx+6=0

 

Ta có g(x) = f(x) + f '(x) + f "(x)

Þ f(x) – g(x) = –[f '(x) + f "(x)]

 = –(3x2 + 2ax + b + 6x + 2a)

= –[3x2 + (2a + 6)x +  b + 2a]

Do đó ta có:

fxgx6gx+6=0

3x2+2a+6x+ b+2a6gx+6=0

3x2+2a+3x+2a+b+6gx+6=0

g'xgx+6=0

 

Û g '(x) = 0

x=x1x=x2

 

Þ S = x1x2g'(x)g(x)+6dx = ln|g(x)+6|x1x2 

= |ln|g(x2) + 6| – ln|g(x1) + 6||

= |ln(−4 + 6) – ln(2 + 6)|

= |ln2 – ln8|

= ln8 – ln2

= 3ln2 – ln2

= 2ln2

Vậy diện tích cần tìm là 2ln2.

Lời giải

Đáp án đúng là: C

Đường thẳng d: x12=y+11=z21 có một vectơ chỉ phương là  ud = (2; 1; −1)

Gọi M = AB ∩ d

Þ M(1 + 2t; −1 + t; 2 – t)

Với A(1; 2; −1) ta có:

AM = (2t; t – 3; 3 – t)

Lại có AB ^ d Û AM .u = 0

Û 2.2t + 1.(t – 3)1.(3 – t) = 0

Û 4t + t – 3 – 3 + t = 0

Û t = 1

Þ AM=2;2;2 

Þ uAB = (1; −1; 1)

Đường thẳng AB đi qua điểm A(1; 2; −1) có vectơ chỉ phương uAB = (1; −1; 1) có phương trình là:

x=1+t'y=2t'z=1+t' (t ℝ)

B nằm trên AB nên ta có B(1 + t'; 2 – t'; –1 + t')

Do B = AB ∩ (P) nên tọa độ của B thỏa mãn phương trình của (P): x + y + 2z + 1 = 0.

Þ 1 + t' + 2 – t' + 2.(–1 + t') + 1 = 0

Þ 2t' + 2 = 0

Þ t' = –1

Khi đó B(0; 3; −2)

Vậy tọa độ của B là (0; 3; −2).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP