Câu hỏi:

16/08/2022 433

Cho tam giác NMP (NP < MN). Trên cạnh MN lấy điểm E sao cho NE = NP. Lấy Q là trung điểm của PE. Qua M kẻ đường thẳng vuông góc với PE tại F. Chọn khẳng định đúng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Media VietJack

• Xét ENQ và PQN có:

NE = NP (giả thiết),

QE = QP (do Q là trung điểm của PE),

NQ là cạnh chung

Suy ra ENQ = PNQ (c.c.c)

Do đó phương án C là sai.

• Vì ENQ = PNQ (chứng minh trên)

Suy ra ENQ^=PNQ^,NEQ^=NPQ^,EQN^=NQP^ (các cặp góc tương ứng)

EQN^+PQN^=180° (hai góc kề bù)

Nên EQN^=PQN^=180°2=90°

Do đó NQ PE. Vậy đáp án A là sai

Mà FM  PE (giả thiết), nên FM // NQ , vậy đáp án B là đúng

Vậy ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình vẽ sau:

Media VietJack

Số đo của BAC^ trong hình vẽ trên bằng:

Xem đáp án » 16/08/2022 1,640

Câu 2:

Cho tam giác MNP có MN < MP. Lấy điểm I trên cạnh MP sao cho MN = PI. Gọi H là điểm sao cho HM = HP, HN = HI.

Khẳng định nào sau đây là đúng ?

Xem đáp án » 16/08/2022 1,240

Câu 3:

Cho hình vẽ sau:

Media VietJack

Khẳng định nào sau đây là đúng ?

Xem đáp án » 16/08/2022 958

Câu 4:

Cho hình vẽ bên dưới:

Media VietJack

Biết AB = AD, B^=D^=90°,BAC^=60°. Số đo góc ACD là:

Xem đáp án » 16/08/2022 867

Câu 5:

Xét bài toán “IAB và IAC có AB = AC, IB = IC (điểm I nằm ngoài tam giác ABC). Chứng minh rằng AIB^=AIC^.”

Cho các câu sau:

(1) “AB = AC (giả thiết),

IB = IC (giả thiết),

IA là cạnh chung”;

(2) “Suy ra IAB = IAC (c.c.c)”;

(3) “Do đó AIB^=AIC^ (hai góc tương ứng)”;

(4) “Xét IAB và IAC có:”.

Hãy sắp xếp một cách hợp lí các câu trên để giải bài toán.

Xem đáp án » 16/08/2022 763

Câu 6:

Cho tam giác IOH, vẽ cung tròn tâm I bán kính OH, vẽ cung tròn tâm O bán kính IH, hai cung tròn này cắt nhau tại K (K và H nằm khác phía so với đường thẳng IO). Khẳng định nào sau đây là đúng nhất?

Xem đáp án » 16/08/2022 710

Câu 7:

Cho hình vẽ bên dưới:

Media VietJack

Số cặp tam giác bằng nhau theo trường hợp cạnh – cạnh – cạnh là:

Xem đáp án » 16/08/2022 675
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay