Câu hỏi:

17/08/2022 249

Cho hình vẽ dưới đây:

Media VietJack

Xét các khẳng định:

(1) BA = CD;

(2) x  BA.

Chọn câu đúng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta có: C^=B^ mà hai góc này ở vị trí so le trong nên AB // CD (dấu hiệu nhận biết)

Do đó A^=D^ (hai góc so le trong)

Xét ABO và DCO có:

A^=D^ (chứng minh trên),

AO = OD (giả thiết),

BOA^=COD^ (hai góc đối đỉnh)

Do đó ABO = DCO (g.c.g)

Suy ra AB = CD (hai cạnh tương ứng)

Khi đó (1) đúng.

Ta lại có AB // CD (chứng minh trên) mà x  CD (giả thiết)

Do đó x  AB. Nên (2) đúng.

Vậy cả (1) và (2) đều đúng, ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Media VietJack

Xét OIM và OIN có:

OMI^=ONI^=90°, 

IOM^=ION^ (do Oz là tia phân giác của xOy^),

OI là cạnh chung,

Do đó OMI = ONI (cạnh huyền – góc nhọn)

Suy ra IM = IN (hai cạnh tương ứng)

Mà IM = 2 cm (giả thiết)

Nên IN = 2 cm

Vậy độ dài đoạn thẳng IN là 2 cm.

Lời giải

Đáp án đúng là: C

Media VietJack

• Vì AD // BC nên BAD^=ABC^, ADC^=DCB^ (hai góc so le trong).

Do đó C là sai.

• Vì DB // AC nên  ABD^=BAC^ (hai góc so le trong).

Do đó D là đúng.

• Xét ABD và BAC có:

BAD^=ABC^ (chứng minh trên),

AB là cạnh chung,

ABD^=BAC^ (chứng minh trên)

Do đó ABD = BAC (g.c.g).

Do đó A là đúng.

• Vì ABD = BAC (chứng minh trên)

Suy ra AD = BC (hai cạnh tương ứng)

Xét AOD và BOC có:

OAD^=OBC^ (vì BAD^=ABC^),

AD = BC (chứng minh trên),

ODA^=OCB^ (vì ADC^=DCB^)

Do đó DAOD = DBOC (g.c.g).

Do đó B là đúng.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình vẽ sau:

Media VietJack

Khẳng định nào sau đây là đúng ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay