Câu hỏi:

12/07/2024 753

Cho hình vẽ dưới đây, biết rằng AC = BD, BC = AD, CAD^=90°, DAB^=30°.

Chứng minh rằng ∆ABC = ∆BDA.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình vẽ dưới đây, biết rằng AC = BD, BC = AD, góc CAD= 90 độ, góc DAB= 30 độ (ảnh 1)

Theo hình vẽ, ta có:

CAB^=CAD^+DAB^=90°+30°=120°

Hai tam giác ABC và BAD, có:

AC = BD, BC = AD (theo giả thiết), AB là cạnh chung

Vậy ∆ABC = ∆BAD (c – c – c)

Từ đây suy ra ABC^=BAD^=30°ABD^=BAC^=120°

Do tổng ba góc trong tam giác ABC bằng 180° nên ta có:

ACB^=180°CAB^ABC^=180°120°30°=30°

Vì ∆ABC = ∆BAD nên BDA^=BCA^=30°

Hai tam giác ABC và BDA, có:

 ABC^=30°=ADB^ (theo chứng minh trên)

BC = AD (theo giả thiết)

ACB^=30°=BAD^ (theo chứng minh trên)

Vậy ∆ABC = ∆BDA.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như Hình 4.42. Gọi E là giao (ảnh 1)

a) ∆ABE và ∆DCE có:

ABE^=DCE^ (chứng minh trên).

AB = CD (theo giả thiết).

BAE^=CDE^ (chứng minh trên).

Do đó ∆ABE = ∆DCE  (g – c – g).

Lời giải

b) ∆DAB và ∆BCD có:

ADB^=CBD^ (vì ∆AOD = ∆COB)

BD chung

ABD^=CDB^ (vì ∆AOB = ∆COD)

Do đó ∆DAB = ∆BCD  (g – c – g).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP