Câu hỏi:

22/08/2022 215 Lưu

Cho hai số phức z1, z2, thỏa mãn |z1 + 6| = 5, |z2 + 2 - 3i| = |z2 - 2 - 6i|. Giá trị nhỏ nhất của |z1 - z2| bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Media VietJack

+) |z1 + 6| = 5

Û (x1 + 6)2 + y12 = 25

M(x1; y1) là điểm biểu diễn của số phức z1 và thuộc đường tròn tâm I(-6; 0) có bán kính R = 5

+) |z2 + 2 - 3i| = |z2 - 2 - 6i|

Û (x2 + 2)2 + (y2 - 3)2 = (x2 - 2)2 + (y2 - 6)2

Û x22 + 4x2 + 4 + y22 - 6y2 + 9 = x22 - 4x2 + 4 + y22 - 12y2 + 36

Û 8x2 + 6y2 - 27 = 0

N(x2; y2) là điểm biểu diễn của số phức z2 và thuộc đường thẳng 8x + 6y - 27 = 0

Ta có |z1 - z2| bằng MN và để |z1 - z2| đạt GTNN thì MN nhỏ nhất

Khi đó đường thẳng MN đi qua I, vuông góc với đường thẳng trên và M gần N nhất

Theo hình vẽ

MNmin = IN - IM

Với IN=dI/d=8.62782+62=152  và IM = R = 5

Nên suy ra MNmin=1525=52.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: D

Gọi S1 và S2 lần lượt là diện tích phần gạch chéo của giao giữa đường thẳng y = x với trục hoành trên khoảng (0; 1) và giao của parabol y = (x - 2)2 và trục hoành trên khoảng (1; 2)

Ta có:

S=S1+S2=01xdx+12x22dx

=01xdx+12x24x+4dx

=x2201+x332x2+4x12

=12+2332.22+4.2132+4=56.

Lời giải

Đáp án đúng là: D

+) nP=1;2;2

+) AB=4;1;2

Viết phương trình mặt phẳng (Q) qua A và song song với mặt phẳng (P) là:

(Q): x - 2y + 2z + m = 0

Mặt phẳng (Q) qua A Þ -3 + 2 + m = 0 Û m = 1

Vậy (Q): x - 2y + 2z + 1 = 0

Lấy H là hình chiếu của B lên (Q)

Đường thẳng BH qua B và có véc-tơ chỉ phương là nQ=1;2;2

BH:x=1+t    y=12tz=3+2t  

H là giao của BH và (Q) nên ta có

(1 + t) - 2(-1 - 2t) + 2(3 + 2t) + 1 = 0

Û 9t + 10 = 0 t=109

Vậy H19;119;79

AH=269;119;29=1926;11;2

Vậy phương trình cần tìm là phương trình AH đi qua A(-3; 0; 1) và có véc-tơ chỉ phương là (26; 11; -2)

AH:x+326=y11=z12.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP