Câu hỏi:
22/08/2022 150Cho hai số phức z1, z2, thỏa mãn |z1 + 6| = 5, |z2 + 2 - 3i| = |z2 - 2 - 6i|. Giá trị nhỏ nhất của |z1 - z2| bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
+) |z1 + 6| = 5
Û (x1 + 6)2 + y12 = 25
M(x1; y1) là điểm biểu diễn của số phức z1 và thuộc đường tròn tâm I(-6; 0) có bán kính R = 5
+) |z2 + 2 - 3i| = |z2 - 2 - 6i|
Û (x2 + 2)2 + (y2 - 3)2 = (x2 - 2)2 + (y2 - 6)2
Û x22 + 4x2 + 4 + y22 - 6y2 + 9 = x22 - 4x2 + 4 + y22 - 12y2 + 36
Û 8x2 + 6y2 - 27 = 0
N(x2; y2) là điểm biểu diễn của số phức z2 và thuộc đường thẳng 8x + 6y - 27 = 0
Ta có |z1 - z2| bằng MN và để |z1 - z2| đạt GTNN thì MN nhỏ nhất
Khi đó đường thẳng MN đi qua I, vuông góc với đường thẳng trên và M gần N nhất
Theo hình vẽ
MNmin = IN - IM
Với và IM = R = 5
Nên suy ra
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính diện tích phần hình phẳng gạch chéo (tam giác cong OAB) trong hình vẽ bên.
Câu 2:
Biết F (x) là một nguyên hàm của hàm số f (x) = e3x và F (0) = 0. Giá trị của F (ln3) bằng
Câu 3:
Trong không gian Oxyz, cho mặt phẳng (P) : x - 2y + 2z - 5 = 0 và hai điểm A(-3; 0; 1), B(1; -1; 3). Tìm phương trình của đường thẳng ∆ đi qua A và song song với (P) sao cho khoảng cách từ B đến đường thẳng ∆ là nhỏ nhất.
Câu 4:
Trong không gian Oxyz. Điểm nào sau đây thuộc mặt phẳng (P): -2x + y - 5 = 0?
Câu 5:
Trong không gian Oxyz, cho hai điểm A (1; -1; 2), B(1; 3; 4). Tìm tọa độ điểm M trên trục hoành Ox sao cho biểu thức P = MA2 + MB2 đạt giá trị nhỏ nhất.
Câu 6:
Diện tích hình phẳng giới hạn bởi hai đường y = x2 + 1 và y = 2x + 1 bằng
Câu 7:
Trong mặt phẳng phức Oxy, gọi M là điểm biểu diễn số phức z = 4 - 3i. Tính độ dài đoạn thẳng OM.
về câu hỏi!