Câu hỏi:
23/08/2022 3,012Cho hàm số y = f (x) có đạo hàm liên tục trên khoảng (1; +∞) thỏa mãn [xf '(x) − 2 f (x)] lnx = x3 – f (x), ∀ x ∈ (1; + ∞); và f ( ) = 3e. Giá trị nhỏ nhất của hàm số y = f (x) trên khoảng (1; +∞) thuộc khoảng nào dưới đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là B
Hàm số y = f (x) có đạo hàm liên tục trên khoảng (1; +∞) và [xf '(x) − 2f (x)] lnx = x3−f(x)
2f '(x) = (1), x ∈ (1; +∞)
Ta có: f ( ) = 3e f (x) = 3lnx (2)
Từ (1) và (2) suy ra y = f (x) có giá trị nhỏ nhất là:
= ≈ 4, 09.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hình phẳng (H) giới hạn bởi các đường y = x2, y = 2x. Thể tích của khối tròn xoay được tạo thành khi quay (H) xung quanh trục Ox bằng:
Câu 3:
Cho bất phương trình log7(x2 +2x + 2) + 1 > log7(x2 + 6x + 5 + m). Có tất cả bao nhiêu giá trị nguyên của m để bất phương trình trên có tập nghiệm chứa khoảng (1; 3)?
Câu 4:
Câu 5:
Gọi S là diện tích hình phẳng giới hạn bởi các đường y = x2 + 2x + 1; y = m (m < 0) và x = 0; x = 1. Biết S = 4, khẳng định nào sau đây đúng?
Câu 6:
Cho hàm số y = f (x) có đạo hàm liên tục trên R, đồ thị hàm số f '(x) như hình vẽ dưới đây. Giá trị nhỏ nhất của hàm số g (x) = f (x) − trên đoạn [−2; 1] là
Câu 7:
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình 22x+4 − .m = 0 có hai nghiệm thực phân biệt?
về câu hỏi!