Câu hỏi:

13/07/2024 3,027

Một mảnh đất hình chữ nhật có chu vi là 28 mét, độ dài đường chéo bằng 10 mét. Tính chiều dài và chiều rộng của mảnh đất đó theo mét.

(Đề thi vào 10 TP Hà Nội năm học 2018-2019)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phân tích đề bài

Chu vi hình chữ nhật là \[2\left( {x + y} \right).\]

Độ dài đường chéo của hình chữ nhật là \(\sqrt {{x^2} + {y^2}} \)

Giải chỉ tiết

Gọi chiều dài và chiều rộng của hình chữ nhật lần lượt là x(m), y(m).

Điều kiện: \[10 > x > y > 0.\]

Từ giả thiết chu vi bằng 28m, suy ra phương trình \[2\left( {x + y} \right) = 28.\] (1)

Độ dài đường chéo của hình chữ nhật là 10m nên: \[\sqrt {{x^2} + {y^2}} = 10 \Leftrightarrow {x^2} + {y^2} = 100.\] (2)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 14\\{x^2} + {y^2} = 100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 14 - y{\rm{               }}\left( 3 \right)\\{x^2} + {y^2} = 100{\rm{           }}\left( 4 \right)\end{array} \right.\)

Lấy (3) thay vào (4) ta được: \[{\left( {14 - y} \right)^2} + {y^2} = 100 \Leftrightarrow 2{y^2} - 28y + {\rm{ }}96 = 0 \Leftrightarrow \left[ \begin{array}{l}y = 8\\y = 6\end{array} \right.\]

Với \[y = 8\] thì \[x = 6\] (không thỏa mãn điều kiện).

Với \[y = 6\] thì \[x = 8\] (thỏa mãn).

Vậy hình chữ nhật đã cho có chiều dài 8m và chiều rộng 6m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x, y (m) lần lượt là chiều dài và chiều rộng của khu vườn hình chữ nhật. Điều kiện: \[x > y > 4.\]

Chu vi của khu vườn là 280 m, nên ta có:

\[2\left( {x + y} \right) = 280 \Leftrightarrow x + y = 140.\] (1)

Sau khi làm lối đi thì chiều dài và chiều rộng của hình chữ nhật là \[x - 4;{\rm{ }}y - 4.\]

Diện tích đất để trồng trọt là: \[\left( {x - 4} \right)\left( {y - 4} \right) = 4256.\] (2)

Một khu vườn hình chữ nhật có chu vi là 280m. Người ta làm một lối đi quanh  (ảnh 1)

Từ (1) và (2) ta có hệ phương trình: \(\left\{ \begin{array}{l}x + y = 140\\\left( {x - 4} \right)\left( {y - 4} \right) = 4256\end{array} \right.\)

Từ (1) ta có: \[y = 140 - x,\] thay vào (2) ta được:

\[\left( {x - 4} \right)\left( {136 - x} \right) = 4256 \Leftrightarrow {x^2} - 140x + 4800 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 60\\x = 80\end{array} \right.\]

Nếu \[x = 80\] thì \[y = 60\] (thỏa mãn).

Nếu \[x = 60\] thì \[y = 80\] (loại).

Vậy khu vườn có chiều dài 80m và chiều rộng 60m

Lời giải

Giải chi tiết

Gọi x (m) là độ dài một cạnh góc vuông. Điều kiện: \[0 < x < 10.\]

Độ dài cạnh góc vuông còn lại \[x + 2\] (m).

Theo đề bài ta có phương trình:

\[{x^2} + {\left( {x + 2} \right)^2} = {10^2} \Leftrightarrow 2{x^2} + 4x - 96 = 0 \Leftrightarrow \]

Vậy độ dài các cạnh góc vuông là 6m và 8m.