Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải chi tiết

3x2y=5     (1)2x+y=8       (2)

Cách 1: Giải bằng phương pháp cộng đại số

Nhận xét: Bằng phương pháp cộng đại số, bài toán có hai hướng làm:

Ÿ Để hệ số x bằng nhau ta nhân hai vế của (1) với 2, nhân hai vế của (2) với 3.

Ÿ Để hệ số y bằng nhau đối nhau ta nhân hai vế của (2) với 2.

Ở bài này, làm theo hướng 2:

            3x2y=52x+y=83x2y=54x+2y=16.

Cộng các vế tương ứng của hai phương trình ta có: 7x=21x=3.

Thay vào phương trình (2) ta được: 6+y=8y=2.

Vậy nghiệm của hệ phương trình là x;y=3;2.

Cách 2: Giải bằng phương pháp thế

Nhận xét: Ta nên rút y theo x ở phương trình hai của hệ, vì hệ số của y là 1.

Ta có: (2)y=82x.

Thay y=82x vào (1) ta được:3x282x=57x16=57x=21x=3

Với  x = 3 thì y=82.3=2.

Vậy nghiệm của hệ phương trình là x;y=3;2.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải chi tiết

Với m=0, ta có hệ: y=3x=0. Hệ có nghiệm duy nhất.

Với m0, hệ phương trình có nghiệm duy nhất m11mm21m±1.

Vậy với m±1thì hệ phương trình có nghiệm duy nhất.

mxy=3mxmy=2my=mx+m3xmmx+m3=2my=mx+m31m2x=m2mx=mm+1y=m2m+1+m3

x=mm+1y=2m3m+1x=1+1m+1y=21m+1.

Cộng hai vế của hai phương trình ta khử được tham số m. Hệ thức cần tìm là x+y=3.

Lời giải

b) Vì 3112 nên hệ phương trình luôn có nghiệm duy nhất x;y.

3xy=2m+3x+2y=3m+16x2y=4m+6x+2y=3m+17x=7m+73xy=2m+3x=m+1y=3m+12m3=m

Hệ phương trình có nghiệm x;y=m+1;m.

Theo đề bài, ta có: x2+y2=5

m+12+m2=52m2+2m4=02m1m+2=0m=1m=2.

Vậy m= 1 hoặc m = -2 thì phương trình có nghiệm thỏa mãn đề bài.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay