Câu hỏi:

13/07/2024 2,231

Chứng minh định lí: “Nếu một tứ giác \[ABCD\] có tổng các cạnh đối bằng nhau \[AB + CD = BC + AD\] thì tứ giác đó ngoại tiếp được một đường tròn” bằng cách chứng minh các tia phân giác của bốn góc \[A,B,C,D\] cùng gặp nhau tại một điểm.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Chứng minh định lí: “Nếu một tứ giác ABCD có tổng các cạnh đối bằng  (ảnh 1)

Ta chỉ cần chứng minh các tia phân giác của ba góc \[A,B,D\] gặp nhau tại một điểm. Xét hai trường hợp:

Trường hợp 1: Nếu \[AB = BC\] thì từ giả thiết suy ra \[CD = AD\].

Xét \[\Delta ABD\]\[\Delta CBD\]\[AB = BC\], \[AD = DC\]\[BD\] chung nên \[\Delta ABD = \Delta CBD\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].

Do đó \[BD\] là đường phân giác của các góc \[B\]\[D\].

Chứng minh định lí: “Nếu một tứ giác ABCD có tổng các cạnh đối bằng  (ảnh 2)

Gọi \[O\] là giao điểm của tia phân giác góc \[A\] với \[BD\]. Suy ra \[BO,DO\] là các tia phân giác của các góc \[B\]\[D\].

Trường hợp 2: Nếu \[AB \ne BC\], giả sử \[AB > BC\], suy ra \[DA > DC\].

Lấy điểm \[M\] trên \[AB\], điểm \[N\] trên \[AD\] sao cho \[BM = BC,DN = DC\].

Từ giả thiết suy ra \[AM = AN\]. Các đường phân giác của các góc \[A,B,D\] chính là các đường trung trực của tam giác \[CMN\] nên chúng gặp nhau tại một điểm \[O\].

Vậy điểm \[O\] là tâm của đường tròn nội tiếp tứ giác \[ABCD\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hình thang vuông \[ABCD\left( {\widehat {A{\rm{ }}} = \widehat D = 90^\circ } \right)\] ngoại tiếp đường tròn tâm \[O\]. Biết \[OB = 10{\rm{ cm}}\], \[OC = 20{\rm{ cm}}\]. Tính diện tích hình thang \[ABCD\].

Xem đáp án » 13/07/2024 1,549

Câu 2:

Cho tam giác \[ABC\] vuông tại \[A\]. Đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[AB,AC\] lần lượt tại \[D,E\].

Tính bán kính của đường tròn \[\left( O \right)\] biết \[AB = 3{\rm{ cm}},AC = 4{\rm{ cm}}\].

Xem đáp án » 13/07/2024 1,330

Câu 3:

Tứ giác \[ABCD\] ngoại tiếp đường tròn \[\left( O \right)\], đồng thời nội tiếp một đường tròn khác. \[AB = 14{\rm{ cm}},BC = 18{\rm{ cm}},CD = 26{\rm{ cm}}\]. Gọi \[H\] là tiếp điểm của \[CD\] và đường tròn \[\left( O \right)\]. Tính các độ dài \[HC,HD\].

Xem đáp án » 13/07/2024 713

Câu 4:

Cho đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\]. \[D,E,F\] lần lượt là các tiếp điểm \[AB,BC,CA\] với \[\left( O \right)\].

Chứng minh rằng \[2AD = AB + AC - BC\].

Xem đáp án » 13/07/2024 560

Câu 5:

Cho tam giác \[ABC\] vuông tại \[A\]. Đường tròn \[\left( O \right)\] nội tiếp tam giác \[ABC\] tiếp xúc với \[AB,AC\] lần lượt tại \[D,E\].

Tứ giác \[ADOE\] là hình gì? Vì sao?

Xem đáp án » 13/07/2024 447

Câu 6:

Cho đường tròn tâm \[O\], các dây \[AB,CD\] vuông góc với nhau. Các tiếp tuyến với đường tròn tại \[A,B,C,D\] cắt nhau lần lượt tại \[E,F,G,H\]. Chứng minh rằng \[EFGH\] là tứ giác nội tiếp.

Xem đáp án » 13/07/2024 395

Bình luận


Bình luận