Cho đường tròn tâm \[O\], các dây \[AB,CD\] vuông góc với nhau. Các tiếp tuyến với đường tròn tại \[A,B,C,D\] cắt nhau lần lượt tại \[E,F,G,H\]. Chứng minh rằng \[EFGH\] là tứ giác nội tiếp.
Cho đường tròn tâm \[O\], các dây \[AB,CD\] vuông góc với nhau. Các tiếp tuyến với đường tròn tại \[A,B,C,D\] cắt nhau lần lượt tại \[E,F,G,H\]. Chứng minh rằng \[EFGH\] là tứ giác nội tiếp.
Quảng cáo
Trả lời:

Gọi \[I\] là giao điểm của \[AB\] và \[CD\]. Góc \[\widehat {BIC} = 90^\circ \] và là góc có đỉnh \[I\] ở bên trong đường tròn nên .
Suy ra \[\widehat {{A_1}} + \widehat {{D_1}} + \widehat {{B_1}} + \widehat {{C_1}} = 180^\circ \].
Ta có \[\widehat F + \widehat H = 180^\circ - \left( {\widehat {{C_1}} + \widehat {{B_1}}} \right) + 180^\circ - \left( {\widehat {{A_1}} + \widehat {{D_1}}} \right) = 180^\circ \].
Vậy \[EFGH\] là tứ giác nội tiếp.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta chỉ cần chứng minh các tia phân giác của ba góc \[A,B,D\] gặp nhau tại một điểm. Xét hai trường hợp:
Trường hợp 1: Nếu \[AB = BC\] thì từ giả thiết suy ra \[CD = AD\].
Xét \[\Delta ABD\] và \[\Delta CBD\] có \[AB = BC\], \[AD = DC\] và \[BD\] chung nên \[\Delta ABD = \Delta CBD\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right)\].
Do đó \[BD\] là đường phân giác của các góc \[B\] và \[D\].

Gọi \[O\] là giao điểm của tia phân giác góc \[A\] với \[BD\]. Suy ra \[BO,DO\] là các tia phân giác của các góc \[B\] và \[D\].
Trường hợp 2: Nếu \[AB \ne BC\], giả sử \[AB > BC\], suy ra \[DA > DC\].
Lấy điểm \[M\] trên \[AB\], điểm \[N\] trên \[AD\] sao cho \[BM = BC,DN = DC\].
Từ giả thiết suy ra \[AM = AN\]. Các đường phân giác của các góc \[A,B,D\] chính là các đường trung trực của tam giác \[CMN\] nên chúng gặp nhau tại một điểm \[O\].
Vậy điểm \[O\] là tâm của đường tròn nội tiếp tứ giác \[ABCD\].
Lời giải
Làm tương tự ví dụ 3, ta tính được: \[r = 4\sqrt 5 {\rm{ cm}}\] (với \[r\] là bán kính đường tròn nội tiếp hình thang \[ABCD\]), \[AB = 6\sqrt 5 {\rm{ cm}},CD = 12\sqrt 5 {\rm{ cm}}\].
Do đó diện tích hình thang \[ABCD\] là:
\[{S_{ABCD}} = \frac{{\left( {AB + CD} \right).AD}}{2} = \frac{{\left( {6\sqrt 5 + 12\sqrt 5 } \right).8\sqrt 5 }}{2} = 360{\rm{ c}}{{\rm{m}}^{\rm{2}}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.