Câu hỏi:

13/07/2024 619

Chứng minh các định lý sau:

a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Giả sử tam giác ABC vuông tại A. Gọi O là trung điểm của BC.

Suy ra OA=12BC=OB=OC (tính chất trung tuyến ứng với cạnh huyền của tam giác vuông).

Do đó, điểm O cách đều ba đỉnh A,B,C hay O chính là tâm đường tròn ngoại tiếp.

Vậy tâm đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

Gọi O=ACBD. Vì ABCD là hình thoi nên O là trung điểm của AC và BDAC tại O.

BD là đường trung trực của đoạn AC.

EF là đường trung trực của AB (theo giả thiết) và EFBD=E. Suy ra E là tâm đường tròn ngoại tiếp ABC.

Chứng minh tương tự, ta cũng có F là tâm đường tròn ngoại tiếp tam giác ABD.

Lời giải

Media VietJack

Xét ADO và CHO có: ADO^=CHO^=90° (giả thiết).

                                    AOD^ chung.

                                    OA=OC (bán kính đường tròn O).

ΔADO=ΔCHO (cạnh huyền – góc nhọn) OH=OD (hai cạnh tương ứng).

OHOA=ODOCDH//AC (định lí Ta-lét đảo) ACDH là hình thang.      (1)

OAC^=OCA^ (do AOC cân tại O).                                          (2)

Từ (1) và (2) suy ra ACDH là hình thang cân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP