Câu hỏi:

13/07/2024 1,323

Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC. Gọi M, N,P,Q lần lượt là trung điểm của DE,DC,BC,BE. Chứng minh rằng bốn điểm M,N,P,Q cùng thuộc một đường tròn.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Ta có: MN//ECMN=12EC (vì MN là đường trung bình của DEC).

Ta có: PQ//ECPQ=12EC (vì MN là đường trung bình của BEC).

Suy ra: MN//PQMN=PQMNPQ là hình bình hành.                   (1)

Mặt khác QM//BD (do MQ là đường trung bình của BDE) và

QMN^=BAC^=90° (góc có cạnh tương ứng song song).   (2)

Từ (1) và (2) suy ra MNPQ là hình chữ nhật. Các tam giác vuông QMN và QPN có chung cạnh huyền QN nên bốn điểm M,N,P,Q cùng thuộc một đường tròn đường kính QN.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thoi ABCD. Đường trung trực của cạnh AB cắt BD tại E và cắt AC tại F. Chứng minh E,F lần lượt là tâm của đường tròn ngoại tiếp các tam giác ABC và ABD.

Xem đáp án » 13/07/2024 6,039

Câu 2:

Cho đường tròn O đường kính AB. Vẽ đường tròn I đường kính OA. Bán kính OC của đường tròn I cắt đường tròn I tại O. Vẽ CHAB. Chứng minh tứ giác ACDH là hình thang cân.

Xem đáp án » 13/07/2024 4,690

Câu 3:

b) Nếu một tam giác có một cạnh là đường kính của đường tròn ngoại tiếp thì tam giác đó là tam giác vuông.

Xem đáp án » 13/07/2024 1,505

Câu 4:

Chứng minh các định lý sau:

a) Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm cạnh huyền.

Xem đáp án » 13/07/2024 483

Bình luận


Bình luận