Cho đường tròn đường kính . Vẽ đường tròn đường kính . Bán kính của đường tròn cắt đường tròn tại . Vẽ . Chứng minh tứ giác là hình thang cân.
Cho đường tròn đường kính . Vẽ đường tròn đường kính . Bán kính của đường tròn cắt đường tròn tại . Vẽ . Chứng minh tứ giác là hình thang cân.
Quảng cáo
Trả lời:

Xét và có: (giả thiết).
chung.
(bán kính đường tròn ).
(cạnh huyền – góc nhọn) (hai cạnh tương ứng).
(định lí Ta-lét đảo) là hình thang. (1)
Mà (do cân tại ). (2)
Từ (1) và (2) suy ra là hình thang cân.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi . Vì là hình thoi nên là trung điểm của và tại .
là đường trung trực của đoạn .
Mà là đường trung trực của (theo giả thiết) và . Suy ra là tâm đường tròn ngoại tiếp .
Chứng minh tương tự, ta cũng có là tâm đường tròn ngoại tiếp tam giác .
Lời giải
Ta có: (vì là đường trung bình của ).
Ta có: (vì là đường trung bình của ).
Suy ra: là hình bình hành. (1)
Mặt khác (do là đường trung bình của ) và
(góc có cạnh tương ứng song song). (2)
Từ (1) và (2) suy ra là hình chữ nhật. Các tam giác vuông và có chung cạnh huyền nên bốn điểm cùng thuộc một đường tròn đường kính .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.