Cho tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O, đường kính AI. Gọi E là trung điểm của AB, K là trung điểm của OI, H là trung điểm của EB.
a) Chứng minh HK AB.
Cho tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O, đường kính AI. Gọi E là trung điểm của AB, K là trung điểm của OI, H là trung điểm của EB.
a) Chứng minh HK AB.
Quảng cáo
Trả lời:

Tam giác ABI nội tiếp đường tròn đường kính AI nên tam giác ABI vuông tại B.
=> IB AB.
Lại có OE AB (quan hệ đường kính và dây cung). Do đó OE // IB. Suy ra OEBI là hình thang.
Mà HK là đường trung bình của hình thang OEBI => HK // OE // IB => HK EB.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Ta có AMN = BMH = 90 - MBH, NDH = 90 - HAD mà MBH = ABC, HAD = HAC và ABC = HAC do cùng phụ với góc BCA, từ đó suy ra AMN = ADH hay tứ giác MHDN nội tiếp => MND = MHD = 90.
Lời giải

Tam giác MPI có: PI MN (vì P là điểm chính giữa của đường tròn (O));
IP = IM (bán kính đường tròn (O)).
Suy ra MPI vuông cân tại I nên MPI = IMP = 45.
Tam giác vuông SMN có SMN = 45 nên SMN vuông cân tại N. Do đó MN = SN.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.