Câu hỏi:
11/07/2024 378Cho nửa đường tròn tâm I, đường kính MN. Kẻ tiếp tuyến Nx và lấy điểm P chính giữa của nửa đường tròn. Trên cung PN, lấy điểm Q (không trùng với P, N ). Các tia MP và MQ cắt tiếp tuyến Nx theo thứ tự tại S và T.
a) Chứng minh NS = MN.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Tam giác MPI có: PI MN (vì P là điểm chính giữa của đường tròn (O));
IP = IM (bán kính đường tròn (O)).
Suy ra MPI vuông cân tại I nên MPI = IMP = 45.
Tam giác vuông SMN có SMN = 45 nên SMN vuông cân tại N. Do đó MN = SN.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A. Kẻ đường cao AH và phân giác trong AD của góc HAC. Phân giác trong góc ABC cắt AH, AD lần lượt tại M, N. Chứng minh rằng BND = 90.
Câu 2:
Cho tam giác ABC cân tại A và nội tiếp trong đường tròn tâm O, đường kính AI. Gọi E là trung điểm của AB, K là trung điểm của OI, H là trung điểm của EB.
a) Chứng minh HK AB.
về câu hỏi!