Dạng 2: Tứ giác có góc trong bằng góc ngoài tại đỉnh đối diện có đáp án
21 người thi tuần này 4.6 3.1 K lượt thi 6 câu hỏi 50 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Ta có AMN = BMH = 90 - MBH, NDH = 90 - HAD mà MBH = ABC, HAD = HAC và ABC = HAC do cùng phụ với góc BCA, từ đó suy ra AMN = ADH hay tứ giác MHDN nội tiếp => MND = MHD = 90.
Lời giải

Tam giác ABI nội tiếp đường tròn đường kính AI nên tam giác ABI vuông tại B.
=> IB AB.
Lại có OE AB (quan hệ đường kính và dây cung). Do đó OE // IB. Suy ra OEBI là hình thang.
Mà HK là đường trung bình của hình thang OEBI => HK // OE // IB => HK EB.
Lời giải
EB cân tại K vì có KH vừa là trung tuyến đồng thời là đường cao => BEK = KBE. (1)
ABC cân và có AI là đường kính của đường tròn (O) nên AK là đường trung trực của đoạn BC
=> ABK = ACK. (2)
Từ (1) và (2) suy ra BEK = ACK. Mà BEK là góc ngoài tại đỉnh E của tứ giác AEKC nên tứ giác AEKC nội tiếp.
Lời giải

Tam giác MPI có: PI MN (vì P là điểm chính giữa của đường tròn (O));
IP = IM (bán kính đường tròn (O)).
Suy ra MPI vuông cân tại I nên MPI = IMP = 45.
Tam giác vuông SMN có SMN = 45 nên SMN vuông cân tại N. Do đó MN = SN.
Lời giải
Xét MNT và NQT có:
MNT = NQT = 90 (giả thiết);
MTN chung.
Suy ra MNT đồng dạng NQT.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
612 Đánh giá
50%
40%
0%
0%
0%