Dạng 3: Tứ giác có bốn đỉnh cách đều một điểm có đáp án
23 người thi tuần này 4.6 3.1 K lượt thi 4 câu hỏi 50 phút
🔥 Đề thi HOT:
Dạng 5: Bài toán về lãi suất ngân hàng có đáp án
Bộ 10 đề thi cuối kì 1 Toán 9 Kết nối tri thức có đáp án - Đề 01
Đề thi minh họa TS vào 10 năm học 2025 - 2026_Môn Toán_Tỉnh Đắk Lắk
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Bộ 10 đề thi cuối kì 2 Toán 9 Chân trời sáng tạo có đáp án (Đề số 1)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải

Gọi I là trung điểm CD, ta có: IC = AB và IC // AB => ICBA là hình bình hành.
=> BC = AI. (1)
Tương tự ABID là hình bình hành nên AD = BI. (2)
ABCD là hình thang có C = D = 60 nên ABCD là hình thang cân (3).
Từ (1), (2) và (3) ta có hai tam giác IAD = IBC đều hay IA = IB = IC = ID hay bốn điểm A, B ,C, D cùng thuộc một đường tròn.
Lời giải

Vì MA, MC là tiếp tuyến nên: MAO = MCO = 90
=> AMCO là tứ giác nội tiếp đường tròn đường kính MO.
ADB = 90 (góc nội tiếp chắn nửa đường tròn).
=> ADM = 90. (1)
Ta có OA = OC = R, MA = MC (tính chất tiếp tuyến).
Suy ra OM là đường trung trực của AC.
=> AEM = 90. (2)
Từ (1) và (2) suy ra AMDE là tứ giác nội tiếp đường tròn đường kính MA.
Lời giải

Ta thấy CFE là góc có đỉnh nằm bên trong đường tròn và chắn hai cung CE, AD.
FCE là góc nội tiếp chắn cung ED. Mà CE = EB, AD = BD nên FCE = CFE => CFE cân tại E.
Lời giải
Theo câu a), ECF và EBM là hai tam giác cân nên CE = EF, EM = EB.
Lại có CE = EB => CE = EB. Do đó CE = EF = EM = EB.
Vậy bốn điểm F, C, M, B thuộc đường tròn tâm E .
612 Đánh giá
50%
40%
0%
0%
0%