Câu hỏi:

11/07/2024 4,084

Cho hình thang ABCD ( AB // CD, AB < CD ) có C = D = 60°, CD = 2AB. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang ABCD ( AB // CD, AB < CD ) có C = D = 60, CD = 2AB. Chứng minh bốn điểm A, B, C, D cùng thuộc một đường tròn. (ảnh 1)

Gọi I là trung điểm CD, ta có: IC = AB và IC // AB => ICBA là hình bình hành.

=> BC = AI.                                                                                       (1)

Tương tự ABID là hình bình hành nên AD = BI.                             (2)

ABCD là hình thang có C = D = 60° nên ABCD là hình thang cân                                                                                                            (3).

Từ (1), (2) và (3) ta có hai tam giác IAD = IBC đều hay IA = IB = IC = ID hay bốn điểm A, B ,C, D cùng thuộc một đường tròn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm  M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (O) ( C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). Chứng minh AMCO và AMDE là các tứ giác nội tiếp đường tròn.

Xem đáp án » 11/07/2024 9,655

Câu 2:

Cho đường tròn tâm O. Kẻ đường kính AB và CD vuông góc với nhau. Gọi E là điểm chính giữa của cung nhỏ CB. EA cắt CD tại F, ED cắt AB tại M.

a) Các tam giác CEF và EMB là những tam giác gì?

Xem đáp án » 30/08/2022 914

Câu 3:

b) Chứng minh rằng bốn điểm C, F, M, B thuộc đường tròn tâm E.

Xem đáp án » 30/08/2022 323