Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) +) Nếu m = 0 thì phương trình trở thành x + 10 = 0, có nghiệm x = –10. Do đó m = 0 không thỏa mãn yêu cầu.

+) Nếu m ≠ 0 thì phương trình vô nghiệm khi và chỉ khi:

∆ = (m + 1)2 – 4.m.( 3m + 10 ) < 0

m2 + 2m + 1 – 12m2 – 40m < 0

–11m2 – 38m +1 < 0

Tam thức bậc hai f (m) = –11m2 – 38m +1 có ∆m = (–38)2 – 4.( –11).1 = 1488  suy ra f(m) có hai nghiệm phân biệt:

m1 = 19+29311  và m2 = 1929311 , a = – 11 < 0 nên f ( m ) < 0 khi và chỉ khi

m < 1929311 hoặc m > 19+29311

Vậy m < 1929311 và m > 19+29311  thoả mãn yêu cầu đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (cm) là chiều rộng hình chữ nhật.

Khi đó chiều dài hình chữ nhật là 202  – x hay 10 – x (cm)

Chiều dài và chiều rộng của hình chữ nhật đều lớn hơn 0 và chiều rộng nhỏ hơn hoặc bằng chiều dài, ta có: 0 < x ≤ 10 – x hay 0 < x ≤ 5 (cm) (1)

Diện tích của hình chữ nhật là S = x. ( 10 – x )

Ta có x.( 10 – x ) ≥ 15 khi và chỉ khi x2 + 10x – 15 ≥ 0.

Tam thức bậc hai f ( x ) = x2 + 10x – 15 có = 102 – 4.1.(– 15) = 160 > 0 hai nghiệm phân biệt x1 = –5 + 2 10 và x2 = –5 – 2 10 , a = 1 > 0 nên f ( x ) ≥ 0 khi và chỉ khi x ≤ –5 – 2 10 hoặc x ≥ –5 + 2 10.

Kết hợp với điều kiện (1) ta được –5 + 2 10 ≤ x ≤ 5 hay 1,33 ≤ x ≤ 5.

Vậy chiều rộng của hình chữ nhật nằm trong khoảng từ 1,33 cm đến 5 cm thì thỏa mãn yêu cầu bài toán.

Lời giải

Cửa hàng có lãi khi và chỉ khi I ( x ) > 0 hay –0,1x2 + 235x – 70000 > 0

Tam thức bậc hai Ix=0,1x2+235x70000   = 2352 – 4.(– 0,1).(– 70 000) = 27 225 > 0 nên I(x) có hai nghiệm phân biệt x1 = 2000 và x2 = 350, a = –0,1 < 0 nên I ( x ) > 0 khi 350 < x < 2000.

Vậy cửa hàng bán ra từ 351 đến 1999 sản phẩm thì cửa hàng có lãi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP