Câu hỏi:

12/07/2024 1,420 Lưu

b) Quả bóng có thể đạt được độ cao trên 4 m không? Nếu có thì trong thời gian bao lâu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Bóng cao trên 4m khi và chỉ khi h (t) = –5t2 + 8t + 2 > 4 hay –5t2 + 8t – 2 > 0

Tam thức bậc hai f ( t ) = –5t2 + 8t – 2 có = 82 – 4.(– 5).(– 2) = 24 > 0 nên f(t) có hai nghiệm phân biệt t1 = 4+65  và t2 = 465 , a = –5 < 0 nên f ( t ) > 0 khi và chỉ khi  4-65 < t < 4+65  .

Quả bóng có thể đạt được độ cao trên 4m trong:

 4+65  4-65  ≈ 0,98 (s).

Vậy quả bóng có thể đạt được độ cao trên 4m trong khoảng ít hơn 0,98 giây.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi x (cm) là chiều rộng hình chữ nhật.

Khi đó chiều dài hình chữ nhật là 202  – x hay 10 – x (cm)

Chiều dài và chiều rộng của hình chữ nhật đều lớn hơn 0 và chiều rộng nhỏ hơn hoặc bằng chiều dài, ta có: 0 < x ≤ 10 – x hay 0 < x ≤ 5 (cm) (1)

Diện tích của hình chữ nhật là S = x. ( 10 – x )

Ta có x.( 10 – x ) ≥ 15 khi và chỉ khi x2 + 10x – 15 ≥ 0.

Tam thức bậc hai f ( x ) = x2 + 10x – 15 có = 102 – 4.1.(– 15) = 160 > 0 hai nghiệm phân biệt x1 = –5 + 2 10 và x2 = –5 – 2 10 , a = 1 > 0 nên f ( x ) ≥ 0 khi và chỉ khi x ≤ –5 – 2 10 hoặc x ≥ –5 + 2 10.

Kết hợp với điều kiện (1) ta được –5 + 2 10 ≤ x ≤ 5 hay 1,33 ≤ x ≤ 5.

Vậy chiều rộng của hình chữ nhật nằm trong khoảng từ 1,33 cm đến 5 cm thì thỏa mãn yêu cầu bài toán.

Lời giải

Cửa hàng có lãi khi và chỉ khi I ( x ) > 0 hay –0,1x2 + 235x – 70000 > 0

Tam thức bậc hai Ix=0,1x2+235x70000   = 2352 – 4.(– 0,1).(– 70 000) = 27 225 > 0 nên I(x) có hai nghiệm phân biệt x1 = 2000 và x2 = 350, a = –0,1 < 0 nên I ( x ) > 0 khi 350 < x < 2000.

Vậy cửa hàng bán ra từ 351 đến 1999 sản phẩm thì cửa hàng có lãi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP