Câu hỏi:

12/07/2024 2,979

Cho đa thức Q(x) = ax2 + bx + c (a ≠ 0). Chứng minh rằng nếu Q(x) nhận 1 và –1 là nghiệm thì a và c là hai số đối nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Xét đa thức Q(x) = ax2 + bx + c (a ≠ 0).

• Tại x = 1 ta có:

Q(1) = a . 12 + b . 1 + c = a + b + c.

Theo bài Q(x) nhận 1 là nghiệm nên Q(1) = 0.

Do đó a + b + c = 0 (1).

• Tại x = –1 ta có:

Q(–1) = a . (–1)2 + b . (–1) + c = a – b + c.

Theo bài Q(x) nhận –1 là nghiệm nên Q(–1) = 0.

Do đó a – b + c = 0 (2)

• Cộng vế theo vế của (1) và (2) ta được:

(a + b + c) + (a – b + c) = 0

a + b + c + a – b + c = 0

2a + 2c = 0

a + c = 0

a = – c.

Do đó a và c là hai số đối nhau.

Vậy a và c là hai số đối nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Mỗi phút vòi nước đó chảy vào bể được 50 l nước thì sau x phút vòi nước đó chảy vào bể được 50x (l nước).

Bể đang chứa 500 l nước, chảy thêm được 50x (l nước) thì sau x phút, lượng nước trong bể có là 500 + 50x (l nước).

Lời giải

a) A(x) = – 11x5 + 4x3 – 12x2 + 11x5 + 13x2 – 7x + 2.

             = (– 11x5 + 11x5) + 4x3 + (– 12x2 + 13x2) – 7x + 2.

             = 4x3 + x2 – 7x + 2.

Vậy A(x) = 4x3 + x2 – 7x + 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP