Câu hỏi:

13/07/2024 2,629

Cho AB và CD là dây cung vuông góc tại E của đường tròn (O). Vẽ hình chữ nhật AECF. Dùng phương pháp tọa độ để chứng minh EF vuông góc với DB.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn hệ tọa độ Oxy như hình vẽ. A(a; 0), B(b; 0), C(0; c), D(0; d). Hai dây cung AB và CD vuông góc với nhau tại E (trùng với gốc tọa độ O).

 

Vì ACEF là hình chữ nhật nên F(a; c). 

Gọi I là tâm đường tròn (O), K và H lần lượt là chân đường cao hạ từ I tới AB, CD.

 K là trung điểm của AB Ka+b2;0.

     H là trung điểm của CD  H0;c+d2.

⇒ Ia+b2;c+d2.

Ta có: IA=aa+b2;c+d2 IA = IA=aa+b22+c+d22 .

           IC=a+b2;cc+d2  IC = IC=a+b22+cc+d22.

Vì IA = IC (= R) ⇒ aa+b22+c+d22=a+b22+cc+d22

 (a b)2 + (c + d)2 = (a + b)2 + (c d)2

 a2 2ab + b2 + c2 + 2cd + d2 = a2 + 2ab + b2 + c2 2cd + d2

 4ab = 4cd  ab = cd  ab − cd = 0 (1)

Ta có: EF= (−a; −c}, BD= (−b; d)

EF. BD= (−a).(−b) − c.d = ab − cd = 0 (theo (1))

EFBD hay EF  BD.

Vậy EF  BD.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn hệ tọa độ như hình vẽ:

Cổng chào của một thành phố có dạng hình parabol có khoảng cách giữa hai chân cổng là (ảnh 2)

Phương trình parabol (P) có dạng y2 = 2px.

Gọi chiều cao của cổng là h (m) OC = h

Ta có khoảng cách từ điểm M đến mặt đất là 2m nên MH = 2 OK = h – 2 và khoảng cách từ chân đường vuông góc vẽ từ M xuống mặt đất đến cổng gần nhất là 0,5 m nên AH = 0,5.

Ta lại có khoảng cách giữa hai chân cổng là 192 m nên AC = 192 : 2 = 96.

Khi đó tọa độ điểm A là A(h; 96)

Mà AH + CH = AC

CH = AC – AH = 96 – 0,5 = 95,5

M(h – 2; 95,5).

Vì các điểm M và A thuộc parabol nên tọa độ của M và A đều thỏa mãn phương trình y2 = 2px, ta có:

962 = 2ph (1) và 95,52 = 2p(h – 2) (2)

Chia vế với vế của (1) cho (2) ta được:

962=2ph95,52=2p(h2)96295,52=hh2 h = 2.96296295,52≈ 192,5 (m)

Vậy chiều cao của cổng khoảng 192,5 m.

Lời giải

c)  Parabol (P) đi qua điểm (1; 4) nên thay tọa độ (1; 4) vào phương trình : y2 = 2px, ta được: 42  = 2p. 1  p = 8.

 Phương trình parabol (P) là: y2 = 2.8x = 16x.

Vậy phương trình parabol (P) là: y2 = 16x.

d) Parabol (P) tiêu điểm Fp2;0 , phương trình đường chuẩn ∆ : x +  = 0.

Vì parabol (P) có khoảng cách từ tiêu điểm đến đường chuẩn bằng 8 nên:

d(F, Δ) = 8 p2+p212+02= 8 p = 8.

 Phương trình parabol (P) là: y2 = 2.8x = 16x.

Vậy phương trình parabol (P) là: y2 = 16x.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay